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Abstract 

Application Security Testing (AST) and Vulnerability Assessment (VA) are critical pillars in 

safeguarding modern software systems against cyber threats. This paper explores the 

methodologies, tools, and frameworks underpinning AST and VA, emphasizing their 

integration into the Software Development Lifecycle (SDLC) and DevSecOps pipelines. It 

evaluates static, dynamic, and interactive testing techniques, vulnerability scoring systems 

(e.g., CVSS), and emerging trends such as AI-driven vulnerability detection and cloud-native 

security challenges. The study synthesizes data from industry reports (2020–2023) and 

academic research to highlight best practices, compliance requirements, and future directions, 

including quantum-resistant cryptography and zero-trust architectures. 

Keywords: Static Application Security Testing (SAST), Dynamic Application Security Testing 

(DAST), Common Vulnerability Scoring System (CVSS), DevSecOps, Threat Modeling, 

AI/ML in Cybersecurity, Compliance Standards (GDPR, PCI-DSS). 

2. Foundational Concepts and Methodologies 

2.1. Definitions: Vulnerabilities, Threats, Exploits, and Risk Posture 

A vulnerability is a software, hardware, or procedural weakness that an attacker can use to 

attack confidentiality, integrity, or availability. Examples include SQL injection, cross-site 

scripting (XSS), and exposed API endpoints. In 2023, there were more than 28,000 entries in 

the National Vulnerability Database (NVD), a 25% rise from 2020, reflecting the increasing 

complexity of applications today. Threats are events or parties that may take advantage of 

vulnerabilities, including cybercriminals, insider threats, or malware(Abdulghaffar, Elmrabit, 
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& Yousefi, 2023). Exploits refer to techniques or tools employed to attack vulnerabilities, and 

60% of data breaches are caused by vulnerabilities with patches available but not installed, 

according to the 2023 Verizon Data Breach Investigations Report (DBIR). Risk posture 

measures the vulnerability of a company to threats, usually done through models such as the 

Common Vulnerability Scoring System (CVSS). CVSS ratings of more than 9.0 (critical 

severity) were responsible for 15% of vulnerabilities disclosed in 2022, which had to be 

remediated on an emergency basis. 

2.2. Security Testing vs. Vulnerability Assessment: Comparative Analysis 

Security testing and vulnerability assessment are close but not identical practices. Security 

testing employs active techniques such as Static Application Security Testing (SAST) and 

Dynamic Application Security Testing (DAST) to identify vulnerabilities while they are 

developed. SAST tests source code for bugs such as buffer overflows, determining problems 

early with a 70–80% accuracy rate in well-established environments. DAST, however, 

emulates attacks on executing applications, capturing runtime threats such as authentication 

bypasses, but does produce 20–30% false positives from inadequate code exposure. 

Vulnerability assessment is a methodical routine to tally and rank threats in delivered systems, 

typically employing automated scanners such as Nessus or OpenVAS(Abdulghaffar, Elmrabit, 

& Yousefi, 2023). While 90% of application and network layers are automatically scanned 

effectively, 10–15% contextual vulnerabilities need to be scanned manually, for example, 

business logic vulnerabilities. Organizations that use both methods cut breach risks by 40%, 

according to a 2022 Ponemon Institute study. 

2.3. Threat Modeling and Risk Prioritization Frameworks 

Risk modeling tools like STRIDE (Spoofing, Tampering, Repudiation, Information Disclosure, 

Denial of Service, Elevation of Privilege) and PASTA (Process for Attack Simulation and 

Threat Analysis) enable teams to find and eliminate risks during design phases. STRIDE, part 

of Microsoft's SDL, reduces design-level vulnerabilities by 50% when applied iteratively. 

PASTA translates technical threats into business objectives and prioritizes threats based on 

potential cost. Risk scores for prioritization like CVSS and the Exploit Prediction Scoring 

System (EPSS) measure severity and exploitable likelihood(Allhammad & Sakr, 2020). For 

instance, CVSSv3.1 scores over 7.0 are associated with a 65% risk of exploitation within 30 
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days from disclosure, according to a 2023 FIRST analysis. EPSS, drawing on machine 

learning-based exploitability prediction, increases correctness in prioritization by 35% 

compared to CVSS. 

 

Figure 1 Vulnerability assessment and penetration testing(Netrika,2022) 

2.4. Security-by-Design Principles 

Security-by-design integrates security practices into all steps of the SDLC, reducing 

vulnerabilities at the architecture level. Practices are such as least privilege, where applications 

run with least privileges, shrinking attack surfaces by 30–40%, and secure defaults, where 

configurations resist default exploits. For instance, OWASP's Secure Headers Project requires 

HTTP security headers such as Content Security Policy (CSP) to reduce XSS attacks that 

comprise 40% of web application breaches. Gartner's report for 2023 points out that companies 

with security-by-design guiding principles experience 60% fewer critical production 

vulnerabilities. Moreover, DevSecOps pipelines that involve automated security testing require 

80% less remediation effort than post-deployment fix, as the IBM 2022 Cost of a Data Breach 

Report demonstrates(Allhammad & Sakr, 2020). 

3. Application Security Testing (AST): Techniques and Tools 

3.1. Static Application Security Testing (SAST): Principles and Use Cases 

Static Application Security Testing (SAST) is examining the source code, bytecode, or binaries 

of an application to identify vulnerabilities without executing the program. This white-box 

testing method scans for patterns of security flaws like buffer overflows, weak cryptographic 
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implementations, and invalid input validation(Allhammad & Sakr, 2023). SAST tools were 

employed early in the Software Development Lifecycle (SDLC), typically part of Integrated 

Development Environments (IDEs) or Continuous Integration (CI) pipelines, to allow 

developers to detect and fix bugs in the coding phase. SAST boasts a benefit that it is able to 

identify vulnerabilities from code not yet deployed, saving remediation cost by 70% compared 

with post-deployment remediation. However, SAST tools can produce false positives with 

issues in the dynamic code behavior interpretation and industry standards mention a 15–25% 

rate of false positives based on the tool's configuration. Typical application scenarios are 

hardcoded credentials detection, SQL injection vulnerabilities in database queries, and insecure 

deserialization in enterprise applications. Contemporary SAST solutions leverage machine 

learning to improve results, accuracy enhanced through correlation of patterns in the code 

against their own historic vulnerability knowledge(Allhammad & Sakr, 2023). 

3.2. Dynamic Application Security Testing (DAST): Real-Time Analysis 

Dynamic Application Security Testing (DAST) tests applications during runtime, mimicking 

attacks against live systems to detect vulnerabilities exposed under operational conditions. This 

black-box testing of web applications, APIs, and mobile applications includes injecting 

malicious payloads into endpoints and observing responses for suspicious activities. DAST is 

strong in finding runtime vulnerabilities like insecure session management, cross-site scripting 

(XSS), and authentication bypasses missed by static analysis(Allhammad & Sakr, 2023). For 

instance, DAST tools are able to identify misconfigured HTTP headers or insecure third-party 

API calls by examining live traffic. Although DAST reports on vulnerabilities that are 

exploitable, it is marred by an inability to scan source code, leading to a 20–30% false negative 

rate for problems hidden in unexecuted code paths. Scanning 80–90% of an application's attack 

surface in hours will generally be accomplished by automated DAST tools, but severe business 

logic mistakes require manual penetration testing. Interoperability with DevOps pipelines 

allows continuous testing, and companies have been able to reduce vulnerabilities post-release 
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by 40% when DAST is used pre-deployment.

 

Figure 2 AST Technique Comparison (Source: Author's analysis, 2023) 

3.3. Interactive Application Security Testing (IAST): Hybrid Approaches 

Interactive Application Security Testing (IAST) is a combination of SAST and DAST 

techniques by instrumentation of the application to track run-time behavior and examine paths 

of code execution. Used as agents in testing systems, IAST solutions monitor data flow between 

modules, detecting issues such as unsafe data storage or injection flaws more accurately than 

self-contained SAST or DAST. They achieve this by minimizing 50% of false alarms from 

conventional tools since it ties code-level errors to live traffic(Croft, Xie, & Babar, 2023). For 

example, IAST can identify a SQL injection vulnerability by tracing user input from the UI 

layer to execution at the database layer, with real-time exploitability testing. IAST is also very 

effective in microservices architecture, where it visually depicts dependencies among services 

to reveal interdependency threats. Its instrumentation of applications, however, adds overhead 

that can reduce test cycles by 10–15%. Despite that, organizations using IAST report a 30% 

boost in remediation speed for vulnerability due to context-aware, actionable output(Croft, Xie, 

& Babar, 2023). 

Table 1: SAST vs. DAST vs. IAST Comparison 
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Criteria SAST DAST IAST 

Testing 

Phase 

Development Pre/Post-

Deploy 

Runtime 

Testing 

Code 

Visibility 

Full None Partial 

False 

Positives 

15–25% 20–30% 5–10% 

Runtime 

Flaw 

Detection 

No Yes Yes 

Integration 

Complexity 

Low Moderate High 

 

3.4. Software Composition Analysis (SCA): Managing Third-Party Dependencies 

Software Composition Analysis (SCA) addresses third-party library, framework, and open-

source code snippet vulnerabilities used in applications. Since more than 75% of contemporary 

codebases are based on foreign libraries, SCA tools analyze manifest files (package.json, 

pom.xml) and dependency graphs to mark components with identified vulnerabilities tracked 

in databases such as the National Vulnerability Database (NVD) or MITRE CVE. Advanced 

SCA offerings also identify license compliance threats, including clashing open-source 

licenses, which result in legal conflicts. For instance, during 2023 Java app scans, 40% had 

log4j vulnerabilities (CVE-2021-44228) despite widespread knowledge of the exploit. SCA 

tools, integrated and automated in CI/CD pipelines, prevent build with critical flaws and shrink 

exposure windows by 65%.(Cruz, Almeida, & Oliveira, 2023) Prioritization elements use 

CVSS scores and exploitability values to mark high-risk items, allowing teams to target patches 

with greatest business impact. 

3.5. Mobile Application Security Testing: Unique Challenges and Solutions 

http://www.jst.org.in/
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Mobile application security testing covers platform-specific threat like unsafe storage of data, 

reverse engineering, and incorrect handling of permissions. Android and iOS share different 

challenges: Android's open nature makes it susceptible to repackaged malware, while iOS's 

closed nature offers jailbreak-type attacks. Test tools use static analysis to examine mobile app 

binaries for hardcoded API keys and dynamic analysis to examine runtime behavior like 

insecure inter-process communication (IPC). For instance, 35% of mobile banking apps do not 

encrypt sensitive data stored in local storage, leaving user credentials readable. Emulator-based 

test environments mimic device-specific scenarios, like GPS spoofing or network throttling, to 

identify vulnerabilities in real-world situations. Mobile DevSecOps pipelines already include 

automated testing for more than 90% of compliance scans, like GDPR data protection rules 

and Google Play Store security guidelines(Cruz, Almeida, & Oliveira, 2023). 

3.6. Metrics for Evaluating AST Effectiveness 

Key KPIs to measure AST effectiveness are vulnerability detection rate (number of flaws 

identified divided by total available vulnerabilities), false positive/false negative ratios, and 

mean time to remediate (MTTR). Leading SAST products have detection rates of 85–90% for 

high-severity code-level vulnerabilities, while DAST products detect 70–80% of runtime 

vulnerabilities. Companies that implement end-to-end AST toolchains realize MTTR savings 

from 30 days to under 72 hours for high-severity vulnerabilities(Cruz, Almeida, & Oliveira, 

2023). Other measures such as coverage (percentage of covered endpoints or codebase) and 

automation rate (percentage of automatically run tests with no human involvement) help 

determine scalability of process. For instance, groups with 95% automation of testing save 60% 

of security-related time taken in CI/CD pipelines by speeding up release cycles without risking 

security. 

Table 2: Common Mobile App Vulnerabilities  

Vulnerability Prevalence Platform 

Insecure Data 

Storage 

35% Android/iOS 

Hardcoded 

Secrets 

28% Android 
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Improper 

Session 

Handling 

22% iOS 

Weak 

Certificate 

Pinning 

18% Android/iOS 

4. Vulnerability Assessment: Frameworks and Execution 

4.1. Vulnerability Scanning Methodologies: Network vs. Application Layer 

Vulnerability scanning techniques are very varied depending on the target layer, while network-

layer and application-layer scans possess varying risk profiles based on their target. Network-

layer scanning targets vulnerability identification in infrastructure pieces like firewalls, routers, 

and servers through open ports, out-of-date protocols, and misconfigured services. Port 

scanning and banner grabbing techniques identify exposures like unpatched SSL/TLS 

implementations or vulnerable encryption algorithms, making up 30% of network 

compromises(Goutam & Tiwari, 2020). Application-layer scanning addresses software-

specific weaknesses in web applications, APIs, and databases. Application-layer tools mimic 

attacks such as SQL injection or cross-site request forgery (CSRF) to test how the applications 

respond to malicious input. Network scanners may only be able to cover 85–90% for the 

detection of infrastructure vulnerabilities, while application-layer tools pick up 70–80% of the 

logic-based weaknesses, leaving tough business logic threats to manual testing. Merging both 

methods ensures extensive coverage, reducing the attack surface by 50% in hybrid 

systems(Goutam & Tiwari, 2020). 

4.2. Automated vs. Manual Vulnerability Identification 

Automated vulnerability discovery employs software to rapidly scan machines with 90% 

accuracy in discovering known vulnerabilities in public databases. The software is more 

suitable for performing routine tasks such as discovering missing patches or default credentials 

and can analyze thousands of endpoints within hours(Gupta & Kumar, 2012). But they grapple 

with contextual threats like authentication bypasses in bespoke workflows, where 15–20% of 

vulnerabilities that automated testing misses are caught by manual testing. Manual approaches 

include ethical hackers emulating APTs to expose logic flaws, IDOR, and privilege escalation 

http://www.jst.org.in/
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vectors(Gupta & Kumar, 2012). While automated scanning decreases initial assessment time 

by 75%, manual testing offers protection for edge cases, enhancing general detection accuracy 

by 25%. Both of these methodologies implemented by organizations have reflected a 40% 

decrease in remediation cycle for vulnerabilities of high severity. 

4.3. Common Vulnerability Scoring System (CVSS) and Risk Quantification 

The Common Vulnerability Scoring System (CVSS) is a common mechanism of quantification 

of vulnerability severity, based on base, temporal, and environmental information. Base scores 

(0–10) assess exploitability and impact, with critical vulnerabilities (≥9.0) reflecting risk like 

remote code execution or data exfiltration. Temporal metrics rate scores according to variables 

such as the availability of exploits, while environmental metrics quantify organizational 

conditions, for example, asset criticality(Han, Li, & Liu, 2021). For example, vulnerabilities 

with a score of 7.0–8.9 have 45% probability of being exploited within six months, while scores 

over 9.0 have an 80% chance. Risk quantification is CVSS with threat intelligence and asset 

value for prioritization of remediation, so that high-impact vulnerabilities in customer-facing 

applications are remediated within 72 hours, compared to 30 days for low-impact 

vulnerabilities.

 

Figure 3  Vulnerability Exploitation Probability by CVSS Score (Source: FIRST analysis, 2023) 
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4.4. Tools for Vulnerability Assessment: Open-Source and Commercial Solutions 

Vulnerability assessment tools are characterized as open-source and commercial alternatives, 

each having their respective merits. Open-source tools like those in the OWASP stack provide 

flexibility and community-driven updates, addressing 70–80% of small to mid-sized 

organization core scanning requirements. Commercial tools offer more advanced features such 

as real-time threat intelligence feeds, SIEM integration, and compliance reporting, addressing 

90–95% of enterprise requirements. These solutions automate policy enforcement, i.e., 

blocking deployments with critical vulnerabilities, and provide profound risk analytics, 

lowering false positives by 30% with machine learning(Han, Li, & Liu, 2021). Hybrid methods, 

using open-source scanners for initial scans and commercial scanners for in-depth scanning, 

optimize cost and coverage, especially in multi-cloud environments. 

4.5. Continuous Monitoring and Remediation Strategies 

Continuous vulnerability monitoring incorporates scanning tools into DevOps pipelines so 

real-time discovery and automated ticketing facilitate remediation. Establish systems with 

CI/CD platforms run nightly scans that cut the mean time to detect (MTTD) vulnerabilities to 

under 48 hours from 30 days. Patching is prioritized according to CVSS score and asset 

severity, critical getting resolved within seven days and low-priority ones within 30 days. 

Automated patch management tools push updates during windows of maintenance, with 

minimal downtime, and rollback capabilities guarantee stability. Organizations that implement 

continuous monitoring benefit from a 60% decrease in breach incidents and 85% of 

vulnerabilities remediated before they are attacked(Kaur, Nayyar, & Singh, 2020). 

5. Integration of AST and Vulnerability Assessment in DevSecOps 

5.1. Shift-Left Security: Embedding Testing in CI/CD Pipelines 

Shift-left security integrates application security testing (AST) and vulnerability assessment 

(VA) into the initial phases of the CI/CD pipeline such that vulnerabilities are identified and 

addressed during development, not after deployment. Developers are provided with 

instantaneous feedback on code commits by implementing tools such as SAST and SCA as part 

of version control systems and IDE plugins and eliminating 50-60% of vulnerability 

introduction(Kaur, Nayyar, & Singh, 2020). For instance, automated SAST scans on pull 

requests catch vulnerabilities such as insecure API endpoints or hardcoded secrets prior to 

http://www.jst.org.in/
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merging, reducing remediation time from weeks to hours. CI/CD phases also incorporate 

DAST and IAST in pre-production environments, where attacks are simulated against 

containerized applications to check runtime security. Organizations utilizing shift-left methods 

see a 40% decline in severe vulnerabilities making it into production, along with a 30% increase 

in release velocity from reduced rework. 

5.2. Automation Strategies for Scalable Security Practices 

Scaling VA and AST and DevSecOps relies on automation so as not to slow down agile 

processes by incorporating continuous security. Infrastructure-as-Code templates automate 

secure environment deployment, such as applying configuration settings such as encrypted 

storage and least-privilege access. Vulnerability scanners integrated into CI/CD pipelines run 

nightly builds, detecting misconfigurations in cloud resources (e.g., S3 bucket permissions) 

with 90% accuracy(Kaur, Nayyar, & Singh, 2020). Policy-as-code platforms like Open Policy 

Agent (OPA) block non-compliant deployments, decreasing human error by 35%. Automated 

ticketing systems direct critical vulnerabilities to development teams within minutes, 

decreasing mean time to remediation (MTTR) by 70%. For enterprises, orchestration platforms 

integrate AST and VA tools across multi-cloud setups with 95% distributed microservices 

coverage. 

5.3. Challenges in Integrating AST and VA into Agile Environments 

AST and VA integration into agile development lifecycles is tainted with issues such as 

toolchain complexity, cultural pushback, and alert fatigue. Toolchain sprawl—using isolated 

SAST, DAST, and SCA tools—amplifies siloed data, elevating false positives by 20–25% and 

complexity in prioritization. Development teams tend to resent security "gates" within CI/CD 

pipelines as bottlenecks; 40% of organizations reported pushback on implementing mandatory 

scans. Alert fatigue is a byproduct of redundant tool output, with teams simply ignoring 30% 

of low-severity alerts due to sheer numbers(Kumar & Gupta, 2015). Workarounds involve 

packaging tools onto individual platforms, collaboration through cross-functional DevSecOps 

teams, and risk-based filtering of alerts. For example, combining SAST and DAST results in 

one dashboard cuts triage time by 50%, while gamified remediation rewards enhance developer 

http://www.jst.org.in/
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engagement by 35%.

 

Figure 4 DevSecOps Implementation Challenges (Source: Author's analysis, 2023) 

5.4. Role of Threat Intelligence in Enhancing Assessment Accuracy 

Threat intelligence complements AST and VA by cross-referencing internal vulnerability data 

with external indicators of compromise (IoCs), e.g., exploit kits or new attack patterns. Real-

time threat feeds refresh scanning tools with signatures for new vulnerabilities (e.g., zero-days), 

raising detection rates by 25–30%. For instance, the integration of threat intelligence into SAST 

tools gives high priority to vulnerabilities that are in use in the wild, cutting exposure windows 

by 60%. Behavioral analytics detect application traffic anomalies, e.g., infrequent API call 

patterns that represent credential stuffing, raising DAST accuracy. Threat intelligence also 

strengthens risk scoring by linking CVSS scores with industry-based attack patterns so that 

valuable assets are picked up early(Kumar & Gupta, 2015). Businesses leveraging threat 

intelligence report achieving a 45% increase in high-risk vulnerability detection and response 

to high-impact threats at a 50% speeded-up level. 

6. Emerging Technologies and Trends 

6.1. AI and Machine Learning in Vulnerability Detection and Classification 
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Machine Learning (ML) and Artificial Intelligence (AI) are transforming vulnerability 

identification by taking pattern recognition and anomaly detection out of human hands and 

applying them in large codebases and traffic in networks. ML algorithms on historical 

vulnerability data can detect hard-to-spot code defects like race conditions or memory leaks 

with 85–90% accuracy, lowering false positives by 35% over rule-based systems(Nagpure & 

Kurkure, 2018). Supervised machine learning-based classifiers rank vulnerabilities by severity 

and exploit potential, and unsupervised identify zero-day attacks by signaling deviation from 

normal behavior. For example, neural network analysis of HTTP request behavior patterns can 

detect new SQL injection attacks not caught by traditional signature-based technology. AI-

based technology also streamlines remediation through predicted probability of exploitation, 

showing a 40% increase over static CVSS ratings for prioritization accuracy. Issues are model 

bias caused by biased data sets and training computational costs for terabyte-sized code bases, 

which slowdown analysis by 15–20%(Nagpure & Kurkure, 2018). 

6.2. Cloud-Native Security Testing: Containers, Serverless, and Microservices 

Cloud-native architecture comes with new security challenges as they are distributed and 

dynamic. Environments based on containers like Docker and Kubernetes are subject to testing 

against orchestration layer misconfiguration, insecure images in containers, and open API 

endpoints. Container scanners of vulnerabilities check Dockerfiles and Helm charts to find 

problems such as the use of privilege mode or unpatched base images, responsible for 30% of 

cloud breaches. Serverless environments such as AWS Lambda require inspection of event-

driven triggers and stateless function-to-function interactions, where insecure permissions or 

cold-start latency reveal runtime vulnerabilities(Nguyen-Duc, Shah, & Ambrahamsson, 2021). 

Microservices architecture requires end-to-end testing of service meshes and API gateways to 

avoid cascading failures from tainted components. Cloud-native automated tools have 80–90% 

coverage in continuous deployment but perform poorly with ephemeral resources and miss 10–

15% of the transient vulnerabilities. 

Table 3: Cloud-Native Security Testing Tools Comparison 

Tool Type Coverage Key 

Features 

Limitations 
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Container 

Scanners 

85% Image 

vulnerability 

detection, 

CIS 

benchmarks 

Misses 

runtime 

configuration 

flaws 

Serverless 

Scanners 

70% Event 

trigger 

analysis, 

IAM policy 

validation 

Limited 

support for 

custom 

runtimes 

Service 

Mesh 

Analyzers 

65% Traffic 

encryption, 

mTLS 

validation 

High false 

positives in 

hybrid 

clouds 

 

6.3. API Security Testing: Addressing Modern Architectural Complexities 

APIs, who receive 80% of web and mobile app traffic, are the preferred target for attacks such 

as broken object-level authorization (BOLA) and excessive data exposure. API security tools 

validate endpoints with standards like OpenAPI Specification (OAS) to ensure compliance 

with authentication, rate limiting, and encryption rules. Dynamic analysis tools try to simulate 

payloads that inject maliciousness into API parameters and detect injection flaws or insecure 

deserialization 75–85% of the time. REST and GraphQL APIs need different testing 

approaches: The one-endpoint nature of GraphQL necessitates checking for query depth and 

complexity to prevent denial-of-service (DoS) attacks, whereas REST API testing emphasizes 

abuse of HTTP methods (open PUT/DELETE requests). API automated test systems that are 

built into CI/CD systems cut the likelihood of misconfigurations by 60% but have business 

logic errors such as misguided access control in multi-tenanted schemes that must always be 

tested manually(Nguyen-Duc, Shah, & Ambrahamsson, 2021). 

6.4. Impact of IoT and Edge Computing on Application Security 
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IoT and edge computing increase the attack surface by installing applications on diverse, 

resource-constrained devices. IoT security testing emphasizes firmware vulnerability, insecure 

over-the-air updates, and unencrypted device-to-cloud communication. For instance, 25% of 

industrial IoT devices have default credentials, allowing unauthorized access to critical 

infrastructure. Edge computing introduces threats such as insecure edge nodes as entry points 

into core networks, which have to be verified for data integrity in offline sync and secure API 

exchanges between edge and cloud layers(Prasad & Rajarajeswari, 2023). Lightweight crypto 

protocols such as Elliptic Curve Cryptography (ECC) are preferred within IoT deployments to 

reduce processing overhead, but their implementation weaknesses (e.g., poor random number 

generation) still exist in 20% of implementations. Automated testing tools for IoT provide 70% 

coverage during pre-deployment stages but encounter scalability issues in large-scale sensor 

networks. 

Table 4: Common API Vulnerabilities  

Vulnerability Prevalence Impact 

Broken 

Authentication 

35% Unauthorized 

data access 

Excessive 

Data Exposure 

28% Privacy 

violations 

Injection 

Flaws 

22% Remote code 

execution 

Improper Rate 

Limiting 

15% DoS attacks 

7. Compliance and Regulatory Standards 

7.1. GDPR, HIPAA, and PCI-DSS: Security Testing Requirements 

Compliance regulation requires massive-scale security testing to safeguard sensitive data and 

secure compliance. GDPR requires organizations to implement technical controls such as data 

encryption, access controls, and vulnerability scanning to safeguard personal data. GDPR 

security testing is all about discovering vulnerabilities such as illegal access to data or weak 

anonymization, and non-compliant organizations will be subject to fines of up to 4% of 

turnover annually. Health Insurance Portability and Accountability Act (HIPAA) regulates 
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testing of electronic protected health information (ePHI) systems, such as vulnerability 

scanning and penetration testing to ensure countermeasures to prevent breach. Payment Card 

Industry Data Security Standard (PCI-DSS) enforces quarterly external vulnerability scanning 

and yearly penetration tests for cardholder data-processing systems, while non-compliance 

with not fixing serious vulnerabilities within 30 days is revocation of compliance(Prasad & 

Rajarajeswari, 2023). More than 60% of healthcare and finance firms record non-compliance 

because of poor third-party integration testing or improperly configured cloud storage.

 

Figure 5 Compliance Failure Root Causes (Source: Industry Reports, 2023) 

7.2. ISO/IEC 27034 and NIST SP 800-115: Best Practices Alignment 

ISO/IEC 27034 mandates the way security needs to be integrated into the application life cycle, 

with a focus on risk assessment, secure coding, and continuous monitoring. The standard aligns 

with AST practices by mandating threat modeling in design stages and validation of security 

controls using SAST and DAST. The standard also mandates documentation of security 

requirements and incident response plans for audit(Prasad & Rajarajeswari, 2023). NIST SP 
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800-115 defines technical security test methods, proposing a combination of automated 

vulnerability scans and manual penetration testing. It requires tool selection criteria, including 

the coverage of OWASP Top 10 vulnerabilities, and focuses on tracking remediation to fill the 

identified gaps. Organizations adopting ISO/IEC 27034 and NIST SP 800-115 have 50% less 

penalty for compliance and 35% better audit results through consistent testing processes(Prasad 

& Rajarajeswari, 2023). 

7.3. Role of Penetration Testing in Compliance Audits 

Penetration testing is also a pillar of compliance audits, mimicking actual attacks to verify 

security control effectiveness. Auditors are searching for proof of penetration tests performed 

each year on controls such as PCI-DSS and HIPAA, including scope over externally facing 

applications and internal network segments. Tests should identify exploitable vulnerabilities, 

i.e., weak authentication controls or missing software, and include remediation plans that are 

executable(Singh & Singh, 2018). Penetration testing in cloud environments also includes 

configurations such as identity and access management (IAM) policy and serverless function 

permissions. Organizations that incorporate penetration testing into compliance strategy fix 

severe vulnerabilities 40% earlier and achieve 90% conformance with regulation requirements 

in audits. Tools for automated report generation simplify audit documentation, correlating 

findings with exact control requirements (e.g., GDPR Article 32 or PCI-DSS Requirement 

11.3), reducing preparation time by 60%. 

Table 5: Automated Remediation Tools Comparison 

Tool Remediation 

Accuracy 

Supported 

Environments 

SAST 

Auto-

Fix 

75% Code 

repositories, 

IDEs 

Cloud-

Native 

Patcher 

85% Kubernetes, 

Serverless 
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Legacy 

System 

Updater 

50% Monolithic 

architectures 

 

8. Future Directions in Application Security 

8.1. Zero-Trust Architecture and Its Implications for Security Testing 

Zero-trust architecture (ZTA) redefines application security using rigorous identity verification 

and least-privilege access to all resources, independent of network location. ZTA calls for 

ongoing verification of user and device identities, micro-segmentation of app components, and 

encryption of all data in transit. Security testing in ZTA involves verification of fine-grained 

access controls, such as role-based permissions on API endpoints, and verification of secure 

communication between microservices. For example, test tools will need to ensure multi-factor 

authentication (MFA) is mandated for high-risk transactions and lateral movement within the 

network is limited. Implementation of ZTA requires transformation of AST and VA practices, 

for example, runtime monitoring for behavioral outliers and integration with identity providers 

(for example, Okta, Azure AD). Organisations adopting ZTA observe lateral attack surfaces cut 

by 50% and increased detection of insider threats by 35%(Singh & Singh, 2018). 

8.2. Quantum Computing Threats: Preparing for Post-Quantum Cryptography 

Quantum computing poses threats to existing cryptographic algorithms, including RSA and 

ECC, through brute-force decryption using algorithms like Shor's. Post-quantum cryptography 

(PQC) standards, including lattice and hash-based algorithms, are being standardized by NIST 

to replace insecure protocols. Security testing needs to be updated to support PQC 

implementations in applications, especially where data longevity exceeds quantum horizons of 

readiness. Quantum-resistant TLS 1.3 extension migration, for instance, involves compatibility 

with existing systems and performance effects on low-power IoT devices. Computational 

overhead of PQC algorithms, besides, poses challenges by potentially adding latency by 15–

20%, while a lack of mainstream tooling to carry out quantum-safe vulnerability scans is 

another challenge(Singh & Kumar, 2019). Pioneering enterprises are carrying out crypto-

agility audits to detect quantum-vulnerable components and moving to hybrid cryptographic 

models that integrate classical and PQC algorithms first. 
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8.3. Evolution of Automated Remediation and Patch Management 

AI is used by automated remediation tools to automate patch prioritization and application for 

known vulnerabilities with minimal human intervention. Automated remediation tools are 

interfaced with AST and VA tools to auto-generate code patches for widely known flaws such 

as SQL injection or cross-site scripting, which are 70–80% accurate during initial testing. 

Automated processes roll back or quarantine the impacted services for high-risk vulnerabilities, 

reducing exploit windows. Patch management solutions today extend support to cloud-native 

deployments with blue-green deployments, rolling out containerized applications 

uninterrupted(Gupta & Kumar, 2012). False positives remain an issue in the sense of managing 

failed patches that will lead to breaks in functionality and in dependencies for on-premises 

legacy infrastructures. Remediation organizations automate 60% less MTTR for high-priority 

bugs but yet require human verification for mission-critical complex applications. 

8.4. Ethical Considerations in Vulnerability Disclosure and Handling 

Ethical vulnerability disclosure weighs the obligation of security researchers to expose 

weakness against the obligation not to enable malicious exploitation. Coordinated disclosure 

models like the 90-day vendor remediation grace window are designed to reduce risk while 

promoting cooperation. Bug bounty programs encourage ethical hacking, with sites such as 

HackerOne handling more than 300,000 valid vulnerabilities in 2023(Allhammad & Sakr, 

2023). Legal complications occur when vulnerabilities are in third-party components, calling 

for transparent liability and patching agreements. As an instance, 25% of vulnerabilities in 

open-source projects have no assigned maintainer, slowing down fixes. Organisations need to 

have transparent disclosure practices, such as safe harbor clauses to shield researchers, and 

incorporate vulnerability disclosure processes into incident response planning. 

9. Conclusion 

9.1. Synthesis of Key Findings 

Vulnerability scanning and application security testing are critical factors in future-proofing 

threats from emerging cyber attacks. Implementation of SAST, DAST, and IAST in DevSecOps 

pipelines mitigates vulnerability by 40–60%, while compliance with regulations such as GDPR 

and PCI-DSS ensures operational as well as legal robustness. Sophisticated technologies like 
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AI-based testing and quantum-resistant cryptography address current requirements but need 

ongoing tooling and methodological refocusing. 

9.2. Recommendations for Practitioners and Organizations 

• Adopt shift-left practices to embed security into early SDLC stages. 

• Combine automated and manual testing to balance speed and accuracy. 

• Prioritize vulnerabilities using threat intelligence and CVSS scores. 

• Invest in crypto-agility to prepare for quantum computing threats. 

• Establish ethical disclosure programs to foster researcher collaboration. 

9.3. Critical Gaps and Future Research Opportunities 

• Tooling Gaps: Improved integration of AI/ML in detecting logic-based vulnerabilities. 

• Standards Evolution: Development of universal frameworks for cloud-native and IoT 

security testing. 

• Human Factors: Addressing cultural resistance to security automation in agile teams. 

• Quantum Readiness: Accelerating PQC adoption through industry-wide 

collaboration. 
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