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Abstract 

Lung cancer is one of the areas in which detection still poses some challenges for the healthcare arena. The 

classical way is to analyse histopathological images by human intervention; this is a time-consuming process that 

is somewhat on the error-prone side. A cloud-based convolutional neural network model has been proposed for 

the diagnosis of lung cancer, specifically targeting lung adenocarcinoma via histopathological images from 

TCGA_LUAD datasets. For cleaner input data, sophisticated preprocessing methods are applied like denoising 

and augmentation. The Firefly Optimization Algorithm has been implemented for feature selection that consumes 

the least computation. Cloud computing helps with scaling, real-time predictions, and access for healthcare 

professionals, thus eliminating some constraints on local hardware resources. Notably, cancer detection with the 

proposed CNN model brings efficiency to the process, increases diagnostic accuracies, and reduces the workload 

of pathologists for treatment decisions. The system is designed to scale and grow with a security infrastructure, 

so it will adapt and incorporate future data and advances in cancer research to obtain more timely and accurate 

clinical diagnostics. 
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1. INTRODUCTION 

One of the most dangerous diseases these days is cancer. Early detection of cancers has been associated with 

better survival outcomes[1].The classical methods of lung cancer detection have depended on manual 

histopathological image interpretation, being a lengthy process and having easy access to errors[2]. The 

complexities and volume of imaging data increase the importance of quick, reliable automated diagnostic 

systems[3]. Convolutional neural networks show a scepticism in this respect, as they specialize in the automation 

of classification tasks, as applied to medical images, and provide very significant improvements in terms of 

accuracy and speed[4].This research thus focuses on developing a CNN model for the cloud for cancer detection, 

with lung cancer (adenocarcinoma) involved, based on histopathological images from the TCGA_LUAD 

dataset[5]. This endeavor aims to provide an enhanced workflow in diagnostics, delivering quick and accurate 

results while combined with cloud computing[6]. This model uses advanced preprocessing techniques, comprising 
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denoising and augmentation, to enhance input quality and increase model generalization[7]. Further, the Firefly 

Optimization Algorithm is utilized to maximize accuracy while minimizing computational cost by selecting the 

most important image features[8]. This Intuition aims to provide a reliable, efficient, and scalable tool for the 

automated diagnosis of cancer, improving upon clinical decision-making and patient outcome[9]. The designed 

CNN model based on a cloud system for cancer detection also addresses scalability and accessibility challenges 

in healthcare systems[10]. It is capable of handling big data sets and ensuring proper processing and storage 

without local hardware limitations by leveraging cloud computing[11]. Therefore, this is an important feature in 

clinical environments where real-time diagnostics are required[12]. The model is designed to be directly accessed 

simple to health professionals through a user-friendly interface prompting upload of histopathological images and 

obtaining results immediately[13]. Continuous updating and improvement are possible for such a model through 

integration with cloud storage since this system can evolve with future data and advances in cancer research[14]. 

The model, therefore, should not only cater to the time frames of supplying timely, automated, and accurate 

diagnostic support for improved cancer detection but also lessen workload requirements on pathologists thereby 

facilitating quicker treatment decisions, which improve the outcome for patients[15]. 

1.1 PROBLEM STATEMENT 

Accelerated identification and diagnosis of cancer, particularly lung cancer, pose a significant challenge 

in the medical field, with traditional approaches being time-consuming and always prone to interpreter error[16]. 

Histopathological image analysis wherein pathologists discriminate between cancerous and non-cancerous cells 

is an important practice for tissue diagnosis. However, given the huge volume and complexity of medical imaging 

data and the need for accurate and quick analysis, traditional means of diagnosis seem to falter under the 

pressure[17]. A delay in the diagnosis might lead to negative repercussions on the patients themselves, particularly 

for aggressive cancers like lung adenocarcinoma[18]. Since timely interventions are crucial, there is a pressing 

need for automated systems that provide accurate and timely diagnostic support for the pathologist[19]. 

Against this backdrop, this research seeks a cloud-based convolutional neural network (CNN) model for detecting 

and diagnosing cancer (lung cancer in particular) with histopathological images[20]. Using TCGA_LUAD dataset 

and via deep learning techniques, this model will be capable of automatically helping classify images into normal, 

benign, and malignant categories[21]. The cloud computing integration would provide the huge prevalence of 

high-performance processing solutions for large datasets at quick-turnaround to clinical environments where 

timely analysis is critical[22]. The cloud-based model will facilitate real-time prediction, thus making it possible 

for the professionals to obtain reliable results without being constrained by the availability of hardware resources, 

thereby enhancing overall accuracy in diagnosis while speeding up the actual decision-making process [23]. 

1.1.2 Objective 

➢ In essence, the design and development of convolutional models in this study were on the realization of 

an automated detection classification of lung cancer histopathological images using TCGA_LUAD 

dataset, together with several other lesser tasks, actually putting the very practical cancer detection 

algorithm into existence. 

➢ Data Preprocessing: Considerable quality improvement is done on the input data using denoising 

methods like Gaussian filtering supported with various data augmentation methods including rotation, 

flipping, and zooming, and normalization in the context of CNN for maximum efficiency. 

➢ Improvement in Feature Selection Using the Firefly Algorithm: The Firefly optimization algorithm aims 

to filter out only the most relevant features for the given high-dimensional image data, so as to minimize 

computational costs and maximize model accuracy. 

➢ User-friendly interface for an on-demand lung cancer diagnosis prediction model. Open up the cloud to 

healthcare professionals for instant predictions based on histopathological images, thus improving the 

efficiency of clinical workflows. 

➢ The architecture is designed to allow scalability for being integrated in the future with larger datasets and 

compliance with various healthcare regulatory acts considering secure and reliable cloud-based 

diagnostics. 

2. LITERATURE SURVEY 

In recent decades, the evolution and rapid deployment of deep learning methodologies have significantly 

transformed the landscape of medical diagnostics, particularly in the realm of histopathological image analysis 

for cancer detection [24]. Histopathology, which involves the microscopic examination of tissue samples, is a 
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gold standard in cancer diagnosis. However, traditional techniques reliant on human expertise often suffer from 

inter-observer variability, subjectivity, fatigue-induced errors, and a requirement for high-level domain experience 

[25]. To circumvent these limitations, Convolutional Neural Networks (CNNs) have emerged as a powerful 

computational approach capable of automating complex image classification tasks with remarkable accuracy and 

consistency [26]. CNNs function by learning intricate hierarchical representations from raw image data, 

progressively abstracting low-level features such as edges and textures to high-level semantic patterns that 

differentiate normal from malignant tissues [27]. These capabilities have been extensively validated in literature, 

where CNNs demonstrate the ability to outperform classical machine learning methods and even match the 

performance of experienced pathologists in certain diagnostic tasks [28]. This transition towards AI-driven 

diagnostics is particularly compelling in the case of lung cancer—an aggressive and often late-diagnosed 

malignancy characterized by highly complex tissue morphologies. The accurate interpretation of histopathological 

slides in lung cancer requires not only a high level of precision but also the ability to handle heterogeneous patterns 

that vary across patients and stages. Consequently, reanalyzing histopathological images through deep learning 

frameworks like CNNs has become an area of prime research interest [29]. Moreover, the integration of cloud 

computing platforms has revolutionized how medical image analysis systems are deployed and scaled. Cloud-

based infrastructures facilitate the processing of large-scale histopathological datasets by providing virtually 

unlimited computational resources, seamless scalability, and ubiquitous accessibility [30]. These platforms allow 

pre-trained CNN models to be deployed and accessed in real-time from anywhere in the world, thereby reducing 

the dependency on local hardware setups and enabling healthcare professionals in resource-constrained settings 

to benefit from advanced diagnostic systems [31], Additionally, cloud solutions enhance collaborative research 

by offering centralized repositories for data storage, model sharing, and joint validation. To further improve the 

performance and computational efficiency of CNN-based models, recent advancements have introduced the 

integration of data augmentation techniques and feature selection strategies using metaheuristic optimization 

algorithms [32]. Among these, the Firefly Optimization Algorithm (FOA) has shown promising results. Inspired 

by the luminescent signaling behavior of fireflies, FOA operates on the principle of attraction, where brighter 

fireflies attract others, thereby guiding the search process towards optimal solutions [33], This bio-inspired 

mechanism proves especially useful in selecting the most informative features from high-dimensional image data, 

which not only reduces the computational load but also enhances the classification performance of the model [34]. 

By employing FOA for feature selection, CNN models become more robust and interpretable. The algorithm 

strategically filters out redundant or non-informative features, ensuring that only the most diagnostically relevant 

patterns are retained [35], This leads to faster convergence during training, improved model generalizability, and 

enhanced diagnostic precision [36]. When coupled with CNNs, FOA serves as a synergistic approach that enables 

the development of lightweight, yet highly accurate, diagnostic tools suited for real-time analysis of extensive 

medical image datasets [37], The growing trend towards cloud integration further complements this framework 

by offering a scalable and cost-effective solution for storing, managing, and analyzing massive volumes of 

medical data Cloud services, such as those provided by AWS, Azure, or Google Cloud [38], not only support the 

deployment of AI models but also enable continuous model updates, real-time feedback loops, and integration 

with electronic health record (EHR) systems [39], This convergence of cloud computing and AI significantly 

accelerates the adoption of intelligent diagnostic systems across a wide spectrum of healthcare institutions, 

ranging from advanced research hospitals to rural clinics [40].   

Building upon these technological advancements, there is an increasing movement toward designing end-to-end 

automated diagnostic pipelines that integrate deep learning models with feature selection algorithms and cloud 

infrastructure to deliver intelligent, responsive, and scalable cancer detection systems [41]. In such frameworks, 

the diagnostic journey begins with the acquisition of histopathological images, which are then preprocessed and 

normalized to ensure uniformity across samples [42]. These images undergo augmentation techniques such as 

rotation, flipping, zooming, and color jittering to artificially increase dataset diversity and prevent overfitting 

during training [43]. Subsequently, CNNs are employed to extract high-dimensional feature maps from the input 

images, capturing both spatial and textural nuances critical for distinguishing cancerous from non-cancerous 

tissues [44]. To optimize the learning process and eliminate redundancy, the Firefly Optimization Algorithm 

(FOA) is deployed to select the most salient features that contribute directly to classification accuracy [45]. This 

step not only reduces computational complexity but also enhances the model’s ability to generalize across diverse 

patient populations [46]. The selected features are then passed through fully connected layers or decision layers 

that generate the final prediction outcomes—categorizing samples into malignant or benign classes [47]. Once 

trained, the entire model is hosted on a cloud platform where it can be accessed by clinicians and healthcare 

practitioners globally [48]. Real-time image uploads, model inference, and feedback reporting are managed 

seamlessly through cloud APIs, allowing for rapid diagnostic support in clinical settings [49]. Moreover, cloud 
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platforms enable model retraining and version control, ensuring that the system evolves with new data and 

maintains high diagnostic fidelity [50]. This integrative paradigm embodies the essence of modern AI-powered 

healthcare: a confluence of data-driven intelligence, evolutionary computation, and ubiquitous accessibility [51]. 

As the field progresses, future directions may include the integration of explainable AI (XAI) methods for 

interpretability, federated learning for privacy-preserving model training, and multimodal learning for combining 

histopathological data with genomic, clinical, or radiological information to deliver more holistic and personalized 

cancer diagnostics. 

3. PROPOSED METHDOLOGY 

The proposed CNN model that is cloud-based for the detection of lung cancer is shown in figure 1. This input 

starts from data acquisition from the database TCGA_LUAD and comes through a preprocessing step that includes 

denoising and augmenting the input data to make it more qualitative and varied. After preprocessing, classification 

of lung cancer with the CNN model is performed. The next step is deploying it on the cloud for scalable processing 

and real-time predictions. Also, with the selected features, the Firefly Optimization Algorithm is executed, which 

would help to optimize the performance of the model by selecting the relevant features while keeping the 

computational cost down. This interoperability framework shows how data preprocessing, cloud coupling, CNN-

based classification, and optimization techniques work in tandem to give automation and improvement in cancer 

detection. 

 

 

Figure1: Proposed Architecture 

3.1 Data collection 

The present research employed the TCGA_LUAD resource (Lung Adenocarcinoma) data available on 

The Cancer Genome Atlas (TCGA) via hosting by the Genomic Data Commons (GDC). This dataset is based on 

Whole Slide Images (WSIs) of lung biopsies stained with Hematoxylin and Eosin (H&E) and scanned at different 

magnifications, ranging from 5x to 40x. These high-resolution digital slides areannotated by certified pathologists, 

whose relevant metadata includes tumor classification (normal, benign, malignant), tumor stage (I–IV), mutation 

types, patient age, and survival outcomes. GDC Data Portal and GDC API give access to the data, both of which 

start a journey toward secure and structured downloading. In the present study, WSIs were downloaded in .svs 

format and screened for quality, annotation completeness, and relevance to lung adenocarcinoma. Each image 

shares a connection with structured clinical metadata, making it adequate in supervised learning. This collected 

data is then moved to a secure cloud storage environment for large-scale parallel preprocessing, training, and 

deployment of CNN models while maintaining compliance with data governance protocols. 

https://www.kaggle.com/datasets/nahin333/tcgaluad 

3.2 Data Preprocessing 

The preprocessing phase becomes essential for the classification of histopathological images coming 

from the TCGA_LUAD dataset with relatively fast and accurate convolutional neural networks. The raw Whole 

Slide Images (WSIs) are often contaminated by visual noise from artifacts of the scanners, uneven staining, or 

background irregularities. To remove these undesired effects, denoising methods such as Gaussian blurring and 

median filtering are used to smooth out the irrelevant noise while retaining local structural features that are 
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https://www.kaggle.com/datasets/nahin333/tcgaluad


Journal of Science and Technology 

 ISSN: 2456-5660 Volume 6, Issue 06 (Nov- Dec 2021) 

  www.jst.org.in                               DOI:https://doi.org/10.46243/jst.2021.v6.i06.pp269- 281 

Page | 273  
 

imperative for making diagnostic inferences. Once the cleaning process is done, data augmentation is further 

performed to enhance the robustness of models and prevent overfitting. Intensification techniques include random 

rotation, flips, zooming, cropping, contrast enhancement, and brightness variations to imitate real-world variations 

in slide preparation and tissue orientation. Post-augmentation, the images are resized to a standard dimension 

(e.g., 224×224 pixels) and normalized to allow the pixel intensity ranges to remain consistent for all images. The 

proposed preprocessing pipeline simultaneously boosts feature quality, increases data diversity, and secures that 

good representative and high-fidelity input data train the CNN model. 

3.2.1 Data Denoising 

Histopathological imaging analysis becomes a vital prior step in any data denoising process for possible 

artifact removal or removal of pixel-level variations that might obscure important features in diagnosis. The whole 

slide images of the TCGA_LUAD dataset generally contain noises stemming from inconsistencies in tissue 

staining, scanner artifacts, or compression losses. Importance of histopathological image analysis in preprocessing 

the data denoised for possible removal of artifacts and pixel-level variations that overshadow important diagnostic 

features. Presence of noise in the whole slide images of the dataset TCGA_LUAD due to the tissue the method 

applies Gaussian filtering to smooth the images by averaging the pixel value of the pixel in question with those 

of its neighbours, using a weighted kernel. This enables the reduction of high-frequency noise while retaining 

cellular regions' edges and structures essential in cancer classification. The Gaussian filter is defined by the 

equation:  

                                 𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 exp (−
𝑥2+𝑦2

2𝜎2 )                                                                             (1) 

where 𝐺(𝑥, 𝑦) is the Gaussian function, and 𝜎 is the standard deviation controlling the degree of smoothing. 

Applying this kernel across the image reduces random variations and enhances the clarity of morphological 

patterns for CNN-based feature extraction. 

3.2.2Data augmentation 

Data augmentation remains an instrumental process to enlarge training data artificially while also 

enhancing data variety, significantly in medical image analysis, where annotated data are in short supply. It aids 

TCGA_LUAD histopathological images in achieving a greater generalization of the models during augmentation 

by simulating potential variations in tissue orientation and position and overall appearance that can occur in real 

clinical settings. Common transformations are random rotations and flips, along with zooming, brightness 

adjustments, and cropping. These operations result in the generation of new training examples that keep the 

essence of pathology, further enabling the CNN to learn robust features. Rotation is a common augmentation 

process mathematically described by a 2D rotation matrix applied to each pixel coordinate                                                

[
𝑥′

𝑦′] = [
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

] [
𝑥
𝑦]                                                                          (2) 

where (𝑥, 𝑦) are the original pixel coordinates, (𝑥′, 𝑦′) are the rotated coordinates, and 𝜃 is the rotation angle. 

This controlled augmentation ensures the CNN becomes invariant to spatial orientations and better detects 

cancerous patterns across varied image contexts. 

3.3 Classification of lung Cancer using CNN 
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Figure2: CNN-Based Lung Cancer Detection with Firefly Feature Selection 

Convolution is the primary operation in CNNs that extracts spatial characteristics from input images by having 

learnable filters slide over the input matrix is shown in figure 2. Each filter captures local patterns like edges and 

textures, while deeper-layer filters capture more abstract feature representations. It reduces the images' spatial 

dimensions but maintains the crucial information necessary for classification. 

3.3.1Convolution of operation 

The most important operation in Convolutional Neural Networks (CNNs) is convolution, which uses 

learnable filters to slide over input matrices to create spatial features from input images. An individual filter 

extracts patterns from the original input, such as edges and textures, and later might capture more abstract patterns 

in the deeper layers. This reduces the spatial dimension, but retains sufficient information for classification 

decisions. 

ℎ𝑖,𝑗
(𝑘)

= ∑  𝑀−1
𝑚=0 ∑  𝑁−1

𝑛=0 𝑥𝑖+𝑚,𝑗+𝑛 ⋅ 𝑤𝑚,𝑛
(𝑘)

+ 𝑏(𝑘)                                                          (3) 

Where ℎ𝑖,𝑗
(𝑘)

 is the output of the 𝑘-th feature map, 𝑥 is the input, 𝑤 is the kernel, and 𝑏 is the bias. 

3.3.2 Activation 

After convolution, an activation function brings non-linear operations into the network and lets the CNN 

learn complex patterns. The most commonly applied activation is ReLU (or Rectified Linear Unit), which lets 

only positive values pass but turns negative outputs into zeroes. 

𝑓(𝑥) = max(0, 𝑥)                                                                         (4) 

This plain but effective operation acts to improve the convergence of the model and helps avoid vanishing 

gradients during backpropagation. 

3.3.3 Max Pooling 

Max pooling is a down sampling technique that reduces spatial dimensions by selecting the maximum 

value within a pooling window. It helps in reducing computation, controlling overfitting, and preserving the most 

significant features from the feature maps. 

𝑦 = max{𝑥1, 𝑥2, … , 𝑥𝑛}                                                                                 (5)       

Where 𝑦 is the pooled value and 𝑥1, 𝑥2, … , 𝑥𝑛 are the values in the pooling region. 

3.3.4 Fully Connected & Classification 

http://www.jst.org.in/
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The fully connected (dense) layer flattens the pooled feature maps and passes them to a set of neurons to 

compute the final classification. Each neuron in the output layer represents a class, and the neuron with the highest 

activation score determines the prediction label. 

𝑧𝑖 = ∑  𝑛
𝑗=1 𝑤𝑖𝑗𝑎𝑗 + 𝑏𝑖                                                                              (6) 

Where 𝑧𝑖 is the input to the softmax layer from neuron 𝑖, 𝑎𝑗 are activations from the previous layer, 𝑤𝑖𝑗 is the 

weight, and 𝑏𝑖 is the bias. 

3.3.5Classification Loss (Cross-Entropy) 

Using cross-entropy loss to measure the model's prediction error, this system can compute the difference 

between expected probabilities and class labels whereby training minimizes it via backpropagation. 

ℒ = − ∑  𝐶
𝑖=1 𝑦𝑖log (�̂�𝑖)                                                                          (7) 

Where 𝑦𝑖 is the actual label (one-hot encoded), �̂�𝑖  is the predicted probability for class 𝑖, and 𝐶 is the number of 

classes. 

3.4  Feature Selection Optimization using Firefly 

The Firefly Optimization Algorithm for feature selection is an intelligent metaheuristic method inspired 

by the flashing behaviour of fireflies, where each firefly corresponds to a probable solution-in this particular case, 

a subset of image features. Therefore, using this method for classifying TCGA_LUAD histopathological images 

will yield the most informative features such as texture, shape, or intensity descriptors-from the highly-

dimensional feature space extracted by CNN layers. The algorithm evaluated each feature subset according to a 

fitness function, often represented by the classification accuracy obtained from such a criterion. Brighter fireflies 

i.e. those with better performing feature sets attract the rest towards the swarm in the direction of optimal or near-

optimal solutions. The balance between exploration and exploitation is incorporated in this iterative movement of 

fireflies such that it discards redundant, noisy or non-informative features. Therefore, the selected features 

increase model accuracy, lessen computation time and improve generalization at cancer detection tasks 

3.4.1 Initialization: 

A population of fireflies is initialized, where each firefly represents a possible subset of features extracted 

from the CNN. These subsets can be encoded as binary vectors indicating whether a specific feature is selected  

3.4.2 Fitness Evaluation: 

Each firefly is evaluated using a fitness function that measures the performance of a classifier (e.g., CNN 

or SVM) using only the selected features. A common fitness metric is classification accuracy, calculated as: 

 Fitness =
TP+TN

TP+TN+FP+FN
                                                                  (8)      

Where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives respectively. 

 

3.4.3 Brightness Comparison: 

Brighter fireflies (higher fitness) attract dimmer ones. Each firefly compares its fitness value with others to 

determine movement direction. 

3.4.4Attractiveness Computation: 

The attractiveness 𝛽 of a firefly decreases with distance and is computed as: 

𝛽 = 𝛽0𝑒−𝛾𝑟2
                                                                                                    (9) 

where: 

• 𝛽0 : initial attractiveness 

http://www.jst.org.in/
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• 𝛾 : light absorption coefficient 

• 𝑟 : Euclidean distance between two fireflies 

3.4.5 Movement Update: 

A firefly 𝑖 is moved toward a more attractive firefly 𝑗 using the rule: 

𝑥𝑖 = 𝑥𝑖 + 𝛽(𝑥𝑗 − 𝑥𝑖) + 𝛼 ⋅  rand                                                                         (10) 

where 𝛼 is the randomization parameter and rand are a random vector in [0,1]. 

3.4.6 Iteration and Convergence: 

Steps 2-5 are repeated for a fixed number of iterations or until convergence. The firefly with the best fitness value 

at the end represents the optimal feature subset. 

3.5 Cloud Storage & Deployment 

Cloud storage and deployment are needed to manage and scale machine learning applications in practice. 

A cloud-based CNN model: datasets and trained models for it will be stored inside a secure cloud environment 

such as AWS S3, Google Cloud Storage, or Azure Blob Storage, and they will be made available for access, 

scalability, and data protection. This cloud platform essentially provides seamless integration with the 

computational resources of GPUs or TPUs for effective training or inference. Once the model has been trained, it 

is deployed using the cloud services such as AWS Lambda or Google Cloud Functions that allow users to send 

their data to receive predictions to use it during RESTful APIs end-points. With respect to flexibility in scaling, 

low latency and high availability, cloud resource-sharing also ensures that all data safety regulations (e.g., HIPAA, 

GDPR) A key equation for cloud-based model deployment involves the data transfer rate 𝑅, which is the speed at 

which data is transferred between the user and the cloud server: 

𝑅 =
𝐷

𝑇
                                                                                  (11) 

Where 𝐷 is the data size (in bytes) and 𝑇 is the time taken for the data transfer (in seconds). This equation ensures 

that data transmission is optimized for fast and efficient cloud model deployment. 

4. Results And discussion 

This three-dimensional graphic involves related visualizations indicating how the training time relates to 

the feature selection, data augmentation, and ultimately model accuracy. The first one shows the linear growth in 

the number of the selected features with respect to training time. More extended training periods allow the models 

to capture many relevant features that contribute to their performance enhancement. The second plot shows how 

data augmentation affects model accuracy quite evidently, where accuracy increases with an increase in training 

time, implying that these tricks of data augmentation, such as rotating, zooming, or flipping images, help in 

making the models robust in practice with longer training sessions. The plot, on the contrary, represents how 

training hours are enhanced by augmentations. It illustrates the gradual improvement of accuracy due to 

augmentations and reaffirms the importance of this technique for extensive training hours. 

http://www.jst.org.in/
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Figure 3: Model Training Time vs Feature Subset Selection 

 

The graph shown on figure 3 depicts a linear relationship between training time of the model (x-axis) 

and number of features selected (y-axis). This, in turn, can be validated using the Firefly Optimization Algorithm. 

From this, it can be inferred that increasing time results in more features being selected, which translates into 

more training time allowing maximal numbers of features based on all possibly relevant attributes. The increased 

training duration might thereby enable the optimization algorithm to assess a wider portion of the feature set, 

allowing for a further distinction of attributes by models. Such a pattern suggests that time and computational 

resources investments matter in the development of more precise feature subsets and, thus, better models for 

specific tasks such as cancer detection. 

 

 

Figure 4: Model Training Time vs Feature Subset Selection  

As figure 4 the training time extends, the effect of the augmentation becomes apparent on accuracy. For shorter 

training times (e.g., 30 seconds), augmentation impacts very little, while for increased training times (up to 150 

seconds), the augmentation effect increases remarkably, proving that the model benefits more from augmentation 

when training runs longer. This implies that longer training gives the model a greater chance to exploit the 

augmented data, thus promoting the generalization ability and reducing overfitting, thereby improving the 

accuracy towards the cancer detection task. 
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Figure 5: Data Augmentation Impact over Training Time 

Thus figure 5 the plot reveals a linear relationship between training time and the data augmentation effect on 

model accuracy. As training time progresses, the impact of data augmentation on the model's accuracy also 

increases steadily. This trend indicates that given increased training time, the model maximizes the use of the 

augmented data-by, say, rotating it, flipping it, or zooming into it-for generalizing and making more accurate 

predictions. The model progressively becomes better at handling and taking advantage of the augmented data. 

Thus, longer training sessions would enable better-but more importantly, effective-learning from augmented 

variations, thus helping combat overfitting and improving the model performance on cancer detection tasks. 

 

 

5. Conclusion and future enhancements  

This is the research outcome of a cloud-based model of convolutional neural network (CNN) that should 

detect and diagnose lung cancer. With application of most advanced preprocessing techniques, such as data 

denoising and augmentation, it will increase input data quality and generalization, thence achieving correct 

classification of histopathological images. The Firefly Optimization Algorithm is integrated for selection of 

features, which beautifies the model additionally because it selects the relevant features to be considered, thus, 

reducing computational complexity and increasing the accuracy of classification. Also, since the system is 

deployed on the cloud, it enables scalability in handling the huge datasets-as well as allowing access by health 

care professionals to the model on real-time basis to fast and accurate diagnosis of cancer. Thus this is an important 

milestone in the direction of totally automating diagnosis in cancers where clinical workflow gets improved, and 

ultimately patient outcome through timely and accurate diagnostic support can be expected. 
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