

Evaluating the Pharmaceutical Sector Through Pharmacopoeial Standards: A Review

S V. Subba Rao¹, G. Manasa², S. Deepthi³, Ch. Vineela⁴

1.Assistant Professor, Department of pharmaceutical Analysis, QIS College of pharmacy, Ongole, A.P

2.Assistant Professor, Department of pharm.Analysis, QIS College of pharmacy, Ongole, A.P

3.Assisant Professor, Department of pharm.Analysis, QIS College of pharmacy, Ongole, A.P

4. Assistant Professor, Department of pharmaceutical Chemistry, QIS College of pharmacy, Ongole, A.P

To Cite this Article

S V. Subba Rao, G. Manasa, S. Deepthi, Ch. Vineela, “**Evaluating the Pharmaceutical Sector Through Pharmacopoeial Standards: A Review**” *Journal of Science and Technology*, Vol. 08, Issue 11- Nov 2023, pp94-106

Article Info

Received: 29-09-2023 Revised: 07-11-2023 Accepted: 18-11-2023 Published: 28-11-2023

ABSTRACT

For the pharmaceutical tablet to be considered a standard drug approval, it must fulfill certain requirements. Various standard factors, including identification, strength, quality, purity, and stability, are used by pharmaceutical companies to test tablets for accuracy. For this reason, pharmaceutical procedures must be controlled, regardless of the problems they may resolve. Raw material inspection, process control, and final product targeting are all included in process control. For this reason, it is important to keep an eye on how well process control is working. In this regard, the manufacturing process should be modified in accordance with the specifications as required, which may also include environmental and equipment management. During the production process, the quality control unit should accept or reject pharmaceutical items after properly examining them for identification, strength, quality, and purity. Highlights of this study include describing pharmaceutical product quality control testing utilizing various equipment for the pharmaceutical sector in accordance with pharmacopeias.

Corresponding Author: S.V.Subba Rao
Mail:subba rao.s.v@gmail.com

INTRODUCTION

Due to the need for safe and efficient medications, the pharmaceutical sector is one of the most regulated in the world. Before pharmaceutical items are manufactured, the Food and Drug Administration mandates that raw materials be tested to determine their identification, purity, and quality. This examination guarantees that the product is

appropriate for its intended purpose and is a crucial stage in the manufacturing of medications. The United States Pharmacopeia/National Formulary, Japanese Pharmacopoeia, European Pharmacopoeia, and numerous additive-based final products are among the things we may analyze, along with raw materials, active pharmaceutical ingredients (APIs), excipients, and food

British Pharmacopoeia and Chemical Codex. Quality is the outcome of thoughtful efforts; it is not an accident. 1. Drug candidate identification requires the synthesis of active pharmaceutical ingredients (APIs), their properties, and their analysis and therapeutic efficacy data. 2. The regulatory body authorizes clinical trials on the proposed system drug following the successful completion of pre-clinical testing. The clinical trial test provides statistically significant information on the relationship between the drug's overall benefit, safety, and risky performance. The medication is simultaneously developing the suggested system, the ideal dosage, and the timetable. This stage assesses the drug's possible interactions with other medications and keeps track of its long-term sustainability. Following a successful clinical study, the medication is made available to patients. A number of chiral drug-related guidelines have been published, encouraging pharmaceutical manufacturers to develop a single enantiomer drug^{3,4}. The International Conference on the Harmonization of Technical Requirements in the Human Use for Pharmaceuticals Registration established the requirements for registering high-quality chiral drugs. 5. In the pharmaceutical sector, quality has grown to be a delicate and important topic. The significance of pharmaceutical goods is becoming more widely recognized as the World Food and Drug Administration for the twenty-first century has united to develop, implement, and integrate the current Good Manufacturing System (cGMP). Particles of unidentified foreign substances may be present in pharmaceutical finished products. To stop more contamination, foreign problems should be recognized and their source should be specified. Controlling errors at every level of the production process is crucial in the pharmaceutical sector. The mix of the medications must guarantee the product's overall excellence. 7. Good manufacturing practices are defined as those that produce high-quality final goods while taking appropriate precautions to safeguard workers. Production and quality control are linked to good manufacturing practices. 8. In order to eliminate flaws at every step of production, quality control personnel evaluate the quality of all production-related components as part of GMP. QC's goal is to create a flawless final product by avoiding flaws at every level of

manufacturing. Teamwork is key to quality control, and while creating a product or process, we must keep in mind that quality must be developed as a medicinal product. Physical plant layout, design, ventilation, cleanliness, and sanitation all have an effect on it throughout regular production⁹. Throughout the production process, in-process quality control testing is carried out at regular intervals¹⁰. Monitoring and altering the manufacturing process to guarantee adherence to the specifications is one of the IPQC's goals. Both equipment control and environmental control may be a part of the process control. They shouldn't take any chances with the quality of their products. The procedure makes it simple to find the test's issues. Sometimes it finds a batch of faulty products that can be fixed, but after the batch is done, it may not be able to. Failure to satisfy the IPC definition suggests that either certain circumstances were beyond of control or certain processes were not followed¹¹. The pharmaceutical sector should first create standard

operating procedures (SOPs), after which IPQCs and tests are described¹². Showing the pharmaceutical analysis quality parameters in accordance with pharmacopeias, which are a component of the raw materials and final product for quality control tests, is the main focus of this study.

Pharmaceutical analysis for quality control testing in pharmaceutical industry

A crucial step in the development and manufacturing of pharmaceuticals is the assessment of pharmaceutical raw materials and final products for contaminants and degradation products. Additionally, any drug-related contaminants that include more than 0.1% of the active pharmaceutical ingredient (API) must have toxicity data. Titration, identification, loss on drying, sulfate ash, dissolution, and disintegration tests utilizing UV-visible, HPLC, GC, or IR detection have historically been used in the conventional analysis of pharmaceutical QC and manufacturing areas.

Universal Examinations for the Pharmaceutical Sector
A few tests that may be used on pharmaceutical tablets and other items in general.
An explanation

The results of these tests are likely to provide the specification and provide a qualitative description of a

medication tablet. For instance, the tablet description in a specification states that it is round, biconvex, white, off-white, film-coated, and painted with "Rx" on one side¹³.

Verifying the identity of the active pharmaceutical ingredient (API) on a pharmaceutical tablet is the aim of identification testing. The identification test will be able to distinguish between substances with structures that are almost identical.

they are most likely there. Identification methods, like the infrared spectrum, should be tailored to novel drug compounds.

Assay

The strength (content) of the API in pharmaceutical tablets is determined using a particular, stability-indicating laboratory test. In many instances, the same technique must be used for both the medicinal ingredient and the quantity of contaminants (for instance, UV/HPLC as seen in Fig. 1).

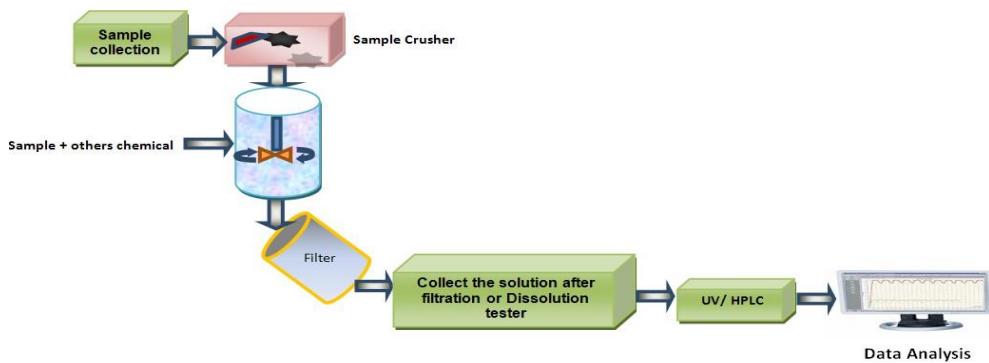


Fig.1.Schematic representation of Assay

Since spectroscopy and chromatography are orthogonal procedures, they both provide distinct and targeted information. Spectroscopy is a technique that provides a "fingerprint" to individual or molecular mixtures, whereas chromatography is a kind of separation procedure. One method that helps with element detection, separation, and quantification in mixtures is HPLC. It works particularly well with chemicals that have a large molecular weight, are not readily volatile, and are not thermally unstable. The advantage of the UV approach over the HPLC method is that it often doesn't call for complex chromatographic treatments and processes. It takes a lot of time and very little money. The HPLC and UV spectrometry technique is a suitable way to measure the dosage of a medicine in its pure form. These techniques may be effectively and simply used for quality control analysis of medications in the form of bulk and single-use samples since they are easy to use, quick, accurate, and exact.

Analysis of UV-absorption spectroscopy for the Pharmaceutical Sector

ry

Detection of Impurities

One of the greatest techniques for identifying contaminants in organic compounds is UV absorption spectroscopy. If contaminants are still present in the sample, further peaks may be tracked and compared to standard raw materials. Absorption at certain wavelengths may also be used to identify impurities. For instance, cyclohexane often contains the contaminant benzene. The absorbance of 255 nm makes it easy to detect.

Quantitative Analysis

The chemicals that absorb UV light may be quantitatively identified using the UV-absorption spectrum. This conclusion is predicated on the following law of beer:

$$A = \log I_0/I = \log 1/T = -\log T = abc = ebc$$

medication dosages on a regular basis. 0 t

Assay and Content Uniformity; Analysis of Drug Impurities; Drug Development & Discovery; Method Development and Drug Validation where b is the length of the cell used on the UV spectrophotometer, c is the concentration, and α is the extinction coefficient. Using a 1 cm match quartz cell to holographic grating system and a UV-3000 UV/Vis spectrophotometer, the light of The analysis is more exact and the instrument is smaller. Using a UV/Vis spectrophotometer, pharmaceutical products are also renowned for their consistent performance. Analysis that is qualitative The kinds of substances that absorb UV light may be determined using UV-absorption spectroscopy. By comparing the spectra of the known substance, the absorption spectrum may be found. Aromatic compounds and aromatic olefins are often identified using the UV-absorption spectrum. Analyzing medicinal compounds quantitatively Both raw materials and formulations may be used to make drugs. Fig. 2 illustrates how these may be produced by making suitable drug solutions in the solvent and measuring absorbance at certain wavelengths. Methanol may be used to evaluate the Diazepam tablet at a wavelength of 257 nm using 0.5% H₂SO₄. Using just modest sample quantities, spectrophotometric techniques for qualitative analysis provide quick and precise findings. Because of its versatility and affordability, this quick and effective substance has emerged as a vital instrument in the pharmaceutical sector. At many high concentrations of organic substances, qualitative analysis has shown itself to be quite successful, which helps to protect the patient's health and safety.

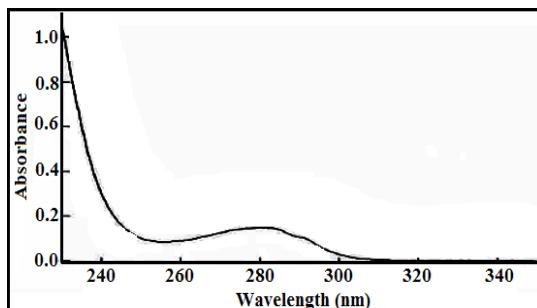


Fig.2.UV-absorption spectroscopy analysis(<https://images.app.goo.gl/>)

High-performance liquid chromatography Analysis for Pharmaceutical Products

One chromatographic analytical method for separating a combination of industrial field substances, biology, and chemistry is high-performance liquid chromatography (HPLC). HPLC is mostly used to blend individual components and purify amounts. It is also used for product testing and raw material identification.

to analyze their goods both qualitatively and quantitatively. In the pharmaceutical sector and analysis, HPLC is important and crucial. A pump, injector, column, detector, and information gathering and display system are all components of an HPLC device. It has better resolution of the substance from the column and can identify trace levels of solvent. Additionally, the Food and Drug Administration in the United States has strict restrictions pertaining to the significance of HPLC in this sector. The USA Pharmacopoeia (1999)¹⁴ states that the HPLC technique was the first to be used for the testing of bulk medicinal ingredients. In the pharmaceutical industry¹⁵, it turns analytical support into the go-to

approach for quality assurance and control on numerous levels. Furthermore, HPLC analysis of medicines and its application to impurity analysis has been used^{16,17}. Before enabling their medicines to be marketed in foreign markets, all of these pharmaceutical businesses use the mandatory HPLC technique to determine the quality of their products. Explaining the structure and quantitative measurement of impurities and degradation products in vast quantities of medicinal materials and pharmaceutical composition is the primary advantage of using the HPLC technology in the analytical and industrial fields. The advantages of using HPLC extend beyond synthetic medications and formulations to encompass natural remedies as well. High performance liquid chromatography (HPLC), a commonly used technique in drug discovery, development, and manufacturing, separates individual chemicals for the detection, quantification, and purification of various components. Figure 3 displays a schematic representation of an HPLC analysis.

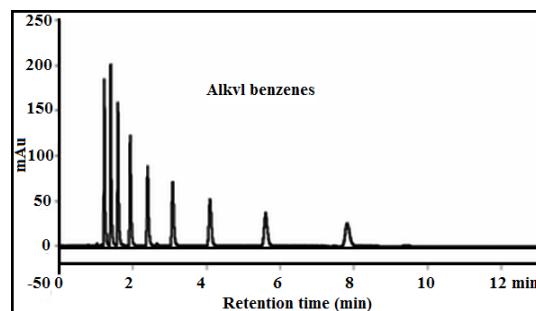


Fig. 3. High-performance liquid chromatography analysis(<https://images.app.goo.gl/vCnths>)

Consequently, there is a high need for HPLC equipment for sophisticated investigation of

the detection of "next generation" The efficacy of Eksigent Express LC Ultra Micro-High-Pressure Liquid Chromatography for a practical pharmaceutical application has been evaluated by Monica Young and Mark at Eksigent Corporation. Fast separation efficiency, cost savings, and excellent system repeatability are made possible by the novel instrument's combination of micro-flow HPLC capabilities and the capacity to separate under high pressures¹⁸. Because it offers the highest reliability, analysis time, repeatability, and sensitivity available, most professionals utilize reverse-phase mode with UV-absorption detection when suitable. Numerous producers of pharmaceutical drugs (19–22) and biological fluids (23–26) have used HPLC. Therefore, HPLC offers a great assistance in addressing a lot of the queries posed by the pharmaceutical sector. However, since column price, solvent, and packing are proprietary, HPLC's shortcomings include a lack of long-term repeatability. One of the most significant analytical methods of the last ten years of the 20th century is liquid chromatography coupled with mass spectrometry (LC-MS)²⁷. At various levels of assurance, the pharmaceutical sector has emerged as the go-to source for analytical assistance and quality control (28–29). Drugs 30–36 have recently been subjected to HPLC-MS. The HPLC drug has been used for pharmaceuticals (37–41), impurity products (42–44), and drug analysis alone.

contaminants

This section covers both organic and inorganic contaminants as well as leftover solvents.

This test detects the presence of any ingredient in pharmaceutical goods that isn't an excipient or API. Related compounds, such as API degradation products and impure processing of novel medicinal ingredients, are the most often detected forms of impurities.

Testing of pharmaceutical products' raw components and final products Temperature, pressure, moisture content, weight, particle size, hardness, drying loss, sulfate ash, color, and integrity are the physical criteria used to evaluate raw materials for the pharmaceutical business. Final product testing for pharmaceutical Assays, mass uniformity, weight variation, friability, active ingredient content, hardness, disintegration, and dissolution tests, among others, are used in the business. Below is a list of the pharmaceutical industry's raw materials and final product tests, as per pharmacopoeias.

Dimensions and Form Dimensions may be used to define and regulate the tablet's size and form. The apparatus used in the condensation process⁴⁵ determines this. Color and Scent Color is a crucial tool for rapid identification and customer acceptability in many pharmaceutical tablets. However, from tablet to tablet and lot, it undoubtedly amounts to a lot in a single tablet. If a batch of pills has an odor, it might be a sign of stability problems. Certain vitamins may have distinct smells, such as acetic acid or the drug's capacity to break down aspirin pills. When it comes to client approval, flavor tablets are crucial⁴⁵.

Granules' Moisture Content The granules have to be strong enough to withstand typical handling and mixing procedures without shattering a significant quantity of tiny powder. Moisture content is crucial for creating high-quality medicine products, nonetheless, as it is prudent to reveal some transparent surface regions for the best bonding while decreasing the size of the tablet connections⁴⁵. Assay

An API is the active component found in tablets. Therefore, appropriate analysis method⁴⁶ must be used in the manufacture of the tablet in order to be able to produce well-finished product relations. Information on how hydration or water absorption affects pharmaceutical goods may be used to support water content acceptance criteria. In many situations, a loss during the drying process could be deemed enough; nevertheless, Figure 4 illustrates an identification technique that is unique to water, such as Karl Fisher titration.

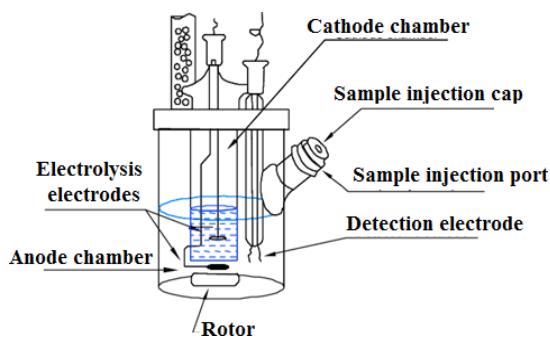


Fig. 4. Karl Fisher titration

Many adjuvants and active pharmaceutical ingredients (APIs) contain water or bonded in a form known as hydrate, which is adsorbed (surface water). Drug quality, shelf life, durability, and active ingredient release are all significantly impacted by water content. As a result, a crucial premise in pharmaceutical analysis is water determination. Karl Fisher titration is by far the most significant technique for figuring out a drug's water content. Samples that are difficult to dissolve or react with the KF reagent, or that simply release their water at high temperatures, may be used with the Karl Fisher oven technique. The process of preparing a sample is rather simple. A sample vial containing the item to be examined is put on a rack after being hermetically sealed with a septum. Release the water from the sample by heating it in an oven. A stream of carrier gas carries moisture to the titration cell for further analysis after a double blank needle punctures the septum.

Content Uniformity The intended impact may not be achieved by a tablet that is physically protected. The quantity of medication in each tablet, as well as across tablets and batches, must be tracked in order to assess the tablet's potential for effectiveness. Determine the individual active ingredient amount of ten randomly selected tablets for this test in accordance with BP using the proper experimental analysis method46. If the average content of each individual content is between 85 and 115 percent, the pill passes BP-based testing. If more than one piece of material is out of range or if only one piece of content is out of range, the average content is between 125 and 75 percent if the tablet does not pass the test. Set the individual contents of the other 20 randomly ingested pills between 75 and 125 percent if one of them above the 85 to 115 percent restriction. If no more than 30 tablet-specific contents fall between 85 and 115 percent of the average content, and nothing falls between 75 and 125 percent of the average content, the tablet passes the test46.

Microbiological limit Microbial limit is regarded as a characteristic of both quality assurance and experimental good manufacturing practices. In general, testing the drug's product is advised unless its contents are examined prior to manufacture and validation studies show that the manufacturing method does not pose a serious danger of bacterial infection or outbreak. Although the principles described here may also apply to outsiders, it should be emphasized that this guideline does not specifically address externalities. Skip testing may be a suitable approach in both situations. It could be feasible to recommend a microbiological limit test for powders meant for reconstitution as oral liquids with a valid scientific basis.

Uniformity of dosage units

This phrase encompasses the dosage form's bulk as well as the amount of active ingredient it contains; a pharmacopoeia approach need to be used. Generally speaking, one or the other—but not both—should be included in specifications. This may be changed during testing if necessary. The specification need to provide acceptance criteria. Applicants should confirm that the product's homogeneity is adequate while producing the medicine before using weight variations in pricing for new drug products.

Weight Variation Test

By comparing average weight and average individual tablet weight, the USP Weight Variation Test may independently run up to 20 tablets. Test results for weight reduction are shown as percentages. The following equations are applied: Variation in Weight = $(Iw - Aw)/Aw \times 100\%$ where Aw is the average weight of tablet47 and Iw is the weight of each tablet individually. The USP states that if the individual population deviates from the

average mass by no more than 2 percent, as shown in Table 1, and no more than twice the percentage⁴⁷, the pill passes the test.

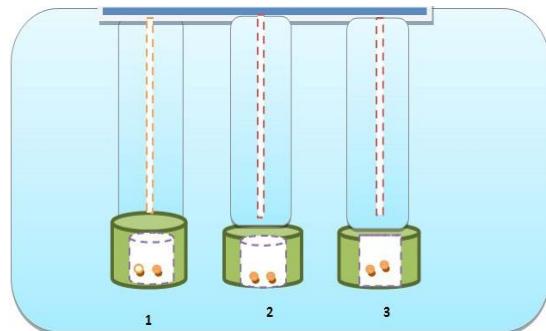
Table 1:USP limits for weight variation test for uncoated tablets

AverageWeight (mg)	PercentageDeviation(%)
130orLess	10
130–324	7.5
Morethan324	7

Hardness Test

The Ketan Tablet Hardness Tester, a Monsanto hardness tester for assessing tablet hardness, was one of the first testers for this test. The tester is armed with a barrel. Zero reading is obtained while the lower plunger remains in contact with the tablet. Until the tablet is cracked by the top plunger enthusiast, the threaded bolt is pressed up against a spring. A pointer moves with the barrel gauge to show the ball as the spring narrows. The crack's force is measured in kilos. Naturally, the stiffness should be examined as a procedural control. It is often not required to specify these functionalities in the specification in these circumstances. The standard of recognition should be included into the specification⁴⁷ if the hardness characteristics significantly affect the quality of the drug's product (such as chewable tablets).

Disintegration Test


One tablet is put on each of the six 3-inch-long, open-topped glass tubes that make up the USP disintegration equipment. The basket rack assembly is set at medium $37 \pm 2^{\circ}\text{C}$. The tubes are positioned at the bottom end of the basket rack assembly against the 10-mesh screen. When these tablets are moving upward, they are 2.5 cm below the fluid's surface, and the vessel lowers more than 2.5 cm from the bottom. The basket assembly containing tablets is moved at a frequency of 28 to 32 cycles per minute using a typical motor-driven device at distances of 5 to 6 cm. The tests may also be conducted using disks made of perforated plastic. These are positioned above the pills and have a negative effect on them. Disks are helpful for floating pills, but they may also have meaning or increase test sensitivity. Run the device for a certain amount of time (15 minutes for uncoated tablets, unless otherwise authorized and justified). ⁴⁷ If the tablets are unplugged and every particle passes through the 10-mesh screen at the designated moment, the tablet passes the test. Any residue that remains must have a soft bulk without a distinct, solid center. If every tablet is fully detached, the tablet conforms with the experiment as per USP. If either one or two Repeat the test on 12 more pills if the first 12 don't break entirely. 18 pills in all, at least 16 of which must be taken in order to pass the test. Tables 2 and 3 provide the British Pharmacopoeia and Fig. 5 the Indian Pharmacopoeia limitations for pill disintegration times, respectively⁴⁷.

Tablet 2:BP limits for disintegration times of tablets

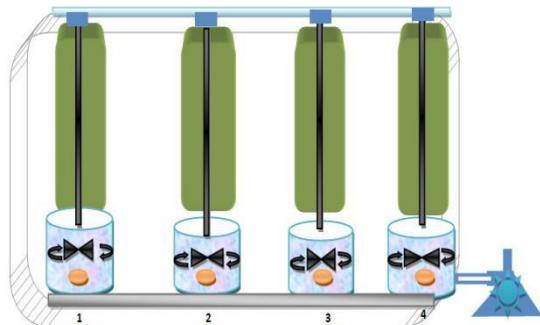
Categories of Tablets	Disintegration Time (min.)
Uncoated tablets	15
Coated tablets	60
Effervescent tablets	5
Soluble tablets	3
Dispersible tablets	3
Orodispersible tablets	3
Gastro-resistant tablets	60
Orallyophilic tablets	3

Tablet 3: IP limits for disintegration times of tablets

Categories of Tablets	Disintegration Time (min.)
Uncoated tablets	15
Coated tablets	60
Enteric-coated tablets	60
Film-coated tablets	30
Effervescent tablets	5
Soluble tablets	3
Dispersible tablets	3

Fig. 5. Schematic Representation of Disintegration Tester**Dissolution Test**

A cylindrical vessel with a hemispherical bottom that can be covered with glass or another transparent, inert material, a motor, a metal drive alloy, and a cylindrical basket make up the British Pharmacopoeia and United States Pharmacopoeia dissolution apparatus (also known as a paddle/basket apparatus), as illustrated in Fig. 6. The vessel is heated by an appropriate equipment, such as a heating jacket, or submerged partly in a handy water bath of a reasonable size. A body of water


During the test, the temperature within the vessel may be maintained at $37 \pm 0.5^\circ\text{C}$ thanks to a bath or heating system, which also maintains the bath fluid moving smoothly and steadily. Keep the dissolving media in the vessel at the designated volume ($\pm 1\%$) for this test⁴⁶, per BP. After assembling the equipment, set the dissolving medium's temperature to $37 \pm 0.5^\circ\text{C}$. One of the air bubbles on the tablet's surface should be carefully removed. Run the machine at a certain speed. Take a sample from the area halfway between the top

of the revolving basket and the surface of the dissolving medium, at least 1 centimeter from the vessel wall, within the allotted time frame, or at each time. Replace the withdrawn aliquots at 37°C for freshly dissolving media when several sampling periods are indicated, or if it can be shown that the medium does not need replacement, adjust the computation for volume changes. Throughout the test, keep the vessel covered, and check the medium's temperature when it's appropriate. Follow the instructions in each particular monograph to conduct analysis using the proper side techniques. Do the experiment again with more pills. The amounts of active ingredient dissolved in the tablets testified by the British Pharmacopoeia, United States Pharmacopoeia, European Pharmacopoeia, Japanese Pharmacopoeia, and International Pharmacopoeia meet the following recognition criteria, as shown in Table 4, unless otherwise noted in separate monographs.

Table4:BP,USP,PhEur,JPandPhIntacceptance criteria for dissolution test of tablet

Stage	Number of Tablet Tested	Acceptance Criteria
S1	6	Each unit is not less than $Q+5\%$.
S2	6	Average of 12 units ($S1+S2$) is equal to or greater than Q , and no unit is less than $Q-15\%$.
S3	12	Average of 24 units ($S1+S2+S3$) is equal to or greater than Q , not more than 2 units are less than $Q-15\%$, and no unit is less than $Q-25\%$.

Proceed with the experiment in phase 3 if the outcomes do not align with S1 or S2. In the table, the percentages of content labeled as 5 percent, 15 percent, and 25 percent correspond to the precise amount of dissolved active ingredient, or quantity Q , represented as a percentage of the indicated material⁴⁶.

Fig.6.Schematic representation of Dissolution Tester

CONCLUSION

Pharmaceutical goods' primary purpose is to shield people against possible sickness or disease. To achieve its intended function, the medicine must be free of contaminants or any interference that might endanger human health. Pharmacopeias establish the benchmark for superior medications. Approximately 30 national and African, European, and international pharmacopoeias are now in use in 140 independent nations, according to the WHO list. According to the current study, different pharmacopoeias recommend different kinds of raw materials and final products for testing pharmaceutical tablets using various

tools in the pharmaceutical industry. However, the primary goal of pharmacopoeias worldwide is to produce high-quality medications for human health.

REFERENCES

1. Dewan,S.M.R.;Alam,A.;Ahamed,S.K.Int. Res. J. of Pharm., 2013, 4, 96.
2. Valagaleti,R.;Burns,P.K.;Michael,G. AnalyticalSupportfor DrugManufacturingin the United States—From Active PharmaceuticalIngredientSynthesistoDrug ProductShelfLife.DrugInformationJournal., 2003, 37, 407-438.
3. FDA's Policy statement for the development of newstereoisomericdrugs.,1992,4,338–340.
4. Health Canada, https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/dhp-mps/alt_formats/hpfb-dgpsa/pdf/prodpharma/stereo-eng.pdf., 2000.
5. European Pharmacopoeia Commission. European Pharmacopoeia, 8thEdition, Council of Europe, Europe., 2013.
6. Sony,A.;Anwar,M.H.;Shafiu,I;Islam,M.M. A review article on introduction of analytical instruments analysis in pharmaceutical industry according to pharmacopoeia, Mintage Journal of Pharmaceutical and Medical Sciences., 2019, 1-4.
7. Woodcock,J.Ameri.Pharmace.Rev.,2004, 7,10-15.
8. Fortunak, J.M.;Souza, R.D.;Kulkarni, A.A.; King, C.L.;Ellison,T.;Miranda, L.S.M.Antivi. Thera., 2014, 9, 4-6.
9. Mehmood, T.; Salaria, M.R.; Herani, G.M.; Qureshi,M.A.Ind.J.ofManage.&Soci.Sci., 2009, 3, 21-30.
10. Levi,L;walker,G.Canadi.Medi.Associ., 2010,91,96.
11. Tangri,P;Mamgain,P;Shaffi;Verma,A.M.L; Lakshmayya. Int. J. of Ind. Pharm. and Bio Sci., 2012, 1, 49-51.
12. Mazumder,B;Bhattacharya,S;Yadav,A.Int. J.ofPharmTechRes.,2011,3,366.
13. Loyd,V.A.J.Remington Introduction to Pharmacy,1stEdition,PharmaceuticalPress, UK., 2013, 146.
14. TheUnitedStatespharmacopeia;thenational formulary United States Pharmacopeial Convention.USPConventionInc.,Rockville., 1999.
15. White,D.;Varlashkin,P.;Rusch,D.N.‘Athin- layerchromatographicmethodtodetermine process impurities in leucovorin calcium. J Pharm Sci., 1992, 81, 1204-9.
16. Nicolas, E.C.; Scholz, T.H. ‘Active drug substance impurity profiling part II. LC/MS/ MS fingerprinting. J Pharm Biomed Anal., 1998, 16, 825-36.
17. Madireddy,V.;Babu,K.S.;Narayananreddy,P.G. J.Anal.Chem.,2011,2,198–207.
18. Monica,M.Y.;Xiaoyi,G.;Schafer,W.;Arnold, D.;Christopher,J.WelchEvaluationofmicro ultra-high pressure liquid chromatography for pharmaceuticalanalysis.Anal.Methods., 2013, 5, 2178-2181.
19. Siddiqui,M.R.;Tariq,A.;Reddy,K.D.; Chaudhary, M.; Yadav, J.; Negi, P.S.; Bhatnagar, A.; Singh, R. Int. J. Pharmacol., 2010, 6, 271–277.
20. Tang, J.;Peng, J.;Zhang, L.;Xiao, X.Anal. Methods., 2012, 4, 1833–1837.
21. Devika, G.S.;Sudhakar,M.;Rao.J.V.,2012, 9,999–1006.
22. Ahmed,M;Manohara,Y.N;Ravi,M.C.,Int.J. Chem.Technol. Res., 2012, 4, 337–345.
23. Tariq,A.; Siddiqui,M.R.;Kumar,J.;Reddy,D.; Negi,P.S.;Chaudhary,M.;Srivastava,S.M.; Singh, R.K. Sci. Asia., 2010, 36, 297–304.
24. Samanidou,V.;Pantazidou,K.;Kovatsi,L.;Njau, S.;Livanos,A.J.Sep.Sci.,2012,35,839–845.
25. Malenovic, A.; Jovanovic, M.; Petrovic, S.; Kostic, N.; Vemic, A.; Janc. S. B. Inst. Sci. Technol., 2012, 40, 138–149.
26. Giorgi,M.G.;Howland,K.;Martin,C.;Bonner, A.B.AnovelHPLCmethodfortheconcurrent analysis and quantitation of seven water-soluble vitamins in biological fluids (plasma and urine. Sci. World J., 2012, 27. Niessen,W.M.A.J.Chromatogr.,1999,179–197.
28. Ermer,J.J Pharm.Biomed.Anal.,1998,18, 707–714.
29. Nicolas,E.C.;Scholz,T.H.J.Phrm.Biomed. Anal., 1998, 16, 825– 836.
30. Hilhorst,M.J.;Hendriks,G.;vanHout,M.W.; Sille'n,H.;vandeMerbel,N.C.Bio-analysis., 2011, 3, 1603–1611.
31. D'Avolio,A.;Simiele,M.;Siccardi,M.;Baietto, L.; Sciandra, M.;

Bonora, S.; Di Perri, G. J. *Pharm.Biomed.Anal.*, 2010, 52, 774– 780. 32.
Berset,J.D.;Brenneisen,R.;Mathieu,C. *Chemosphere.*,2010,81,859–866. 33.
Ding,L.;Huang,X.;Yang,J.;Bian,X.;Zhang,Z.; Liu,G.J.*Pharm.Biomed.*,2006,40,758-62.
34. Wren,S.A.C.;Tchelitcheff,P.J.*Pharm. Biomed. Anal.*, 2006. 40, 758–762. 35.
Zhou,J.;Dai,X.;Fang,X.;Li,H.;Zhao,Y.;Gong, A. *Instrum.Sci.Technol.*,2011,39,522–533.
36. Breaud,A.R.;Harlan,R.;Kozak,M.;Clarke, W.*Clin.Biochem.*,2009,42,1300–1307. 37.
Chitturi, S.R.; Somannavar, Y.S.; Peruri, B.G.; Nallapati, S.; Sharma, H.K.; Budidet, S.R.;Handa, V.K.;Vurimindi,H.B.J.*Pharm. Biomed. Anal.*, 2011, 55, 31–47. 38.
Madireddy,V.;Babu,K.S.;Narayanreddy,P. *Glob. J. Anal. Chem.*, 2011, 2, 198–207. 39.
Navaneeswari,R.;Reddy,P.R.*Afr.J.Scient. Res.*, 2011, 6, 318–324. 40.
Thomas,S.;Bharti,A.;Tharpa,K.;Agarwal,A. *J.Pharm.Biomed.Anal.*,2012,60,86–90. 41.
Verbeken, M.; Suleman, S.; Baert, B.; Vangheluwe,E.;Dorpe,S.V.;Burvenich,C.; Duchateau,L.;Jansen,F.H.;DeSpiegeleer, *MalariaJ.*,2011,10,51.51. 42.
Sabry,S.M.;Belal,T.S.;Barary,M.H.;Ibrahim, M.E.A.*DrugTestAnal.*,2012. 43.
Hanysova,L.; Grafnetterova,T.; Dubovska,B.; Klims, J.*Chem.Papers.*, 2005, 52, 99–102.
44. Bouchonnet,S.;Bourcier,S.;Souissi,Y.;Genty, C.;Sablier,M.;Roche,P.;Boireau,V.;Valerie, *I.J.MassSpectrum.*,2012,47,439–452. 45.
Lachman, L; HA Lieberman, H.A.; Kanig, JL. *The Theory and Practice of Industrial Pharmacy*, 3rdEdition., 1986, 296-300. 46. *British Pharmacopoeia Commission;British Pharmacopoeia*, 13thEdition., 2013. 47. *Unites States Pharmacopoeia Convention; United States Pharmacopoeia*. 38-National Formulary 33., 2010.