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Groundwater recharge modeling is critically hindered by the scarcity of long-term, high-resolution 

time-series data, limiting the robustness and generalization capability of predictive models. We propose the 

Attention-enhanced Sequential Generative Adversarial Network ( ) to synthesize high-fidelity, 

multivariate hydrological records, explicitly addressing the complex temporal dependencies required for 

groundwater dynamics. The architecture incorporates three key innovations: stabilization via the WGAN-GP 

objective for continuous learning; utilization of a pre-trained LSTM autoencoder to establish a meaningful 

latent space; and integration of a Self-Attention mechanism within the generative networks to effectively 

capture critical long-range dependencies, such as multi-year climatic cycles. A three-pronged evaluation 

demonstrated exceptional data quality: Statistical Fidelity confirmed the preservation of feature 

relationships, and Temporal Coherence validated the realism of sequential patterns. Crucially, the Predictive 

Utility was confirmed, with an auxiliary forecasting model trained on synthetic data achieving a Mean 

Absolute Error (MAE only 4.4% higher) than a model trained on real data. This provides a stable and effective 

generative approach for time-series augmentation, offering a viable path to developing reliable forecasting 

tools in data-scarce hydrological contexts.  

 

KEYWORDS: Generative Adversarial Networks (GANs); Attention Mechanism; Deep Learning; Adversarial 

Training; Self-Attention Mechanism; Deep Generative Models; Semi-Supervised Learning; Context-Aware 

Generation. 
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I. INTRODUCTION 

Groundwater is a vital resource, sustaining 

ecosystems, agriculture, and municipal water 

supplies globally [1-4]. Groundwater recharge—the 

process by which water infiltrates the ground and 

adds to the underlying aquifer—is the cornerstone 

of sustainable groundwater management. 

Accurately quantifying groundwater recharge rates 

is crucial for sustainable resource management, as 

it sets pumping limits to prevent aquifer depletion 

and related issues like saltwater intrusion and land 

subsidence [5]. It is also essential for contaminant 

transport prediction, as recharge drives the 

movement of pollutants into the aquifer [6,7]. 

Furthermore, recharge modeling aids in climate 

change adaptation by projecting aquifer responses 

to altered precipitation, and it is vital for balancing 

competing demands in the Water-Energy-Food 

Nexus [8-10]. 

Despite its importance, the accurate modeling of 

groundwater recharge is frequently hampered by a 

fundamental obstacle: data scarcity, particularly in 

developing countries and arid/semi-arid regions 

[11-15]. Addressing the data scarcity challenge 

requires leveraging remote sensing technologies, 

integrating data from diverse sources (e.g., citizen 

science, agricultural reports), and adopting 

machine learning approaches to interpolate and 

predict missing data [16,17].  
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The sustainable management of groundwater 

resources hinges on accurate estimates of 

groundwater recharge, a complex, non-linear 

hydrological process driven by numerous factors 

including rainfall, temperature, and land use. 

However, reliable modeling is fundamentally 

limited by the scarcity of long-term, 

high-resolution time-series data [18]. Many regions 

vital to water security are classified as data-scarce 

catchments, where measurement records are often 

too short or sporadic to capture the full range of 

hydrological variability (e.g., multi-year drought 

cycles). Consequently, standard time-series 

forecasting methods trained on limited records 

often suffer from poor generalization capabilities. 

This challenge necessitates novel approaches 

capable of augmenting existing records with 

synthetic, statistically representative data. 

Generative Adversarial Networks (GANs) [19] 

offer a powerful mechanism for synthesizing data 

by modeling the underlying data generating 

process itself. A GAN framework—composed of a 

Generator and a Discriminator—can learn the 

complex, implicit distribution of the original 

hydrological data, enabling the creation of 

synthetic time series that maintain high statistical 

fidelity. While GANs have shown success in various 

domains, their direct application to sequential, 

multivariate data faces critical challenges, 

primarily training instability and the failure to 

accurately preserve temporal coherence (i.e., the 

realistic sequencing of events over time). 

The foundation for time-series GANs, such as 

TimeGAN [20], has demonstrated that leveraging 

an autoencoder framework can stabilize generation 

by embedding the data into a meaningful latent 

space. However, existing models still struggle with 

long-range dependencies—the ability to relate 

current recharge levels to climatic events that 

occurred many months or years in the past—a 

crucial requirement for accurate groundwater 

dynamics modeling. 

To address the limitations of data scarcity and 

the inherent challenges of time-series GANs, we 

introduce the Attention-Enhanced Sequential GAN 

( ) designed specifically for multivariate, 

time-dependent hydrological data. Our 

architectural enhancements focus on stability, 

temporal structure, and long-range learning: 1) 

Training Instability This is addressed through the 

robust Wasserstein GAN with Gradient Penalty 

(WGAN-GP) [21]. By operating with the Wasserstein 

distance in the latent space, we ensure the 

Discriminator provides stable, continuous gradient 

feedback to the Generator, mitigating mode 

collapse, 2) Temporal Structure Preservation: This 

is achieved via a pre-trained LSTM-based 

Embedder/Recovery autoencoder framework [20]. 

This phase creates a stable, low-dimensional latent 

space that already contains the essential temporal 

features before adversarial training begins, and 3) 

Long-Range Dependency: This is mitigated by 

integrating a Self-Attention mechanism [22] into 

the generative and encoding networks. This allows 

the model to prioritize critical historical events, 

such as long-term drought or intense multi-year 

rainfall, dynamically determining which time steps 

are most relevant for predicting the sequence's next 

state. 

II. METHODOLOGY 

The Attention-enhanced Sequential GAN 

( ) is a sequence-to-sequence deep 

generative model designed to learn the underlying 

distribution of multivariate time series. The 

architecture is composed of four primary networks: 

the Embedder (E), the Recovery (R), the Generator 

(G), and the Discriminator (D). These networks are 

optimized through a three-stage training process: 

pre-training of the autoencoder, adversarial 

stabilization using WGAN-GP, and final 

multi-objective adversarial optimization. 

2.1. Sequential Autoencoder and Attention 

Mechanism 

The foundational stability of the architecture is 

established by the sequential autoencoder, formed 

by the Embedder and Recovery networks. This 

framework achieves crucial dimensionality 

reduction and extracts a stable, low-dimensional 

latent representation of the hydrological data. 

2.1.1. Embedder (E) 

The Embedder network acts as a time-series 

encoder. It is an LSTM-based network that maps 

the high-dimensional real input sequence X to the 

feature-rich latent space H. The input sequence is 

defined as , where T is the sequence length 

and F is the number of features. The latent 

sequence H maintains the temporal length but 

reduces the feature dimension to . 
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2.1.2. Recovery (R) 

The Recovery network functions as the decoder, 

reconstructing the original sequence  from the 

compressed latent representation H. 

 
 

During the pre-training phase, E and R are jointly 

trained to minimize the reconstruction error ( ), 

ensuring that the latent representation H preserves 

the maximum information required for accurate 

recovery: 

 

2.1.3. Self-Attention Integration 

A critical enhancement is the inclusion of a 

Self-Attention layer [22] immediately following the 

primary LSTM unit in both the Embedder (E) and 

the Generator (G). This attention mechanism 

mitigates the inherent limitation of LSTMs in 

capturing long-range dependencies, which are vital 

for modeling groundwater recharge (e.g., relating 

current aquifer status to rainfall that occurred over 

18 months prior). The attention layer dynamically 

weights the importance of all time steps in the 

input sequence, allowing the model to focus on the 

most predictive historical events regardless of their 

distance from the current time step. 

 
Figure-1. Detailed View of the Self-Attention Mechanism within Recurrent Networks. 

 

Figure-1 explains the core mechanism that 

allows the proposed model to capture long-range 

dependencies by dynamically assigning weights to 

historical time steps. The self-attention layer  

dynamically computes the relevance of all 

historical time steps ( ) within the input sequence 

(H) relative to the current time step (t). This 

mechanism generates attention weights that 

highlight the most critical historical events (e.g., 

distant drought periods) for prediction, effectively 

resolving the long-range dependency problem. 

 

2.2. Adversarial Networks and WGAN-GP 

Stabilization 

The adversarial stage trains the Generator (G) 

and the Discriminator (D) within the compressed 

latent space (H), leveraging the stability of the 

pre-trained Embedder. 

2.2.1. Generator (G) 

The Generator transforms a random noise vector, 

, into a synthetic latent sequence . 

G also includes the Self-Attention layer to enforce 

realistic sequential dynamics in its output. 

 

 

 

2.2.2. Discriminator (D) 

The Discriminator is an LSTM-based network 

tasked with distinguishing the real embedded 

sequence ( ) from the synthetic sequence 

( ), returning a scalar score for “realness.” By 

operating in the low-dimensional latent space, the 

Discriminator’s task is stabilized, enhancing the 

quality of the gradients passed back to G. 

 

2.2.3. WGAN-GP Stabilization 

To prevent mode collapse and training instabilities, 

the adversarial objective employs the Wasserstein 

GAN with Gradient Penalty (WGAN-GP) [21]. This 
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method replaces the standard Jensen-Shannon 

divergence loss with the Wasserstein distance 

(Earth Mover’s distance), which provides a more 

robust and informative gradient. The Discriminator 

loss ( ) is formulated to enforce the 1-Lipschitz 

constraint via the Gradient Penalty ( ) term, 

where λ is the penalty weight (typically 10.0): 

 
 

 
Figure-2. Architecture of the Attention-enhanced Sequential Generative Adversarial Network( ). 

 

Figure-2 illustrates the four primary networks 

and the data flow in the pre-training and 

adversarial phases. The Embedder (E) and 

Recovery (R) form the autoencoder used for initial 

stabilization. The Generator (G) and Discriminator 

(D) operate exclusively in the low-dimensional 

latent space (H). The Self-Attention modules are 

integrated into both E and G to enhance long-range 

temporal feature extraction. 

2.3. Multi-Objective Generator Loss 

The Generator is trained using a composite loss 

function ( ) that balances three critical 

objectives, ensuring the synthetic data is not only 

indistinguishable from the real data but also 

temporally meaningful and structurally 

compatible. 

1) Adversarial Loss ( ): Drives the Generator 

to maximize the Discriminator’s output 

score for the synthetic data, thereby 

encouraging statistical realism: 

 
 

2) Supervised Reconstruction Loss ( ): This 

term ensures that the synthetic latent 

space ( ) is structurally compatible with 

the Embedder’s output, preventing the 

Generator from wandering into 

meaningless regions of the latent space. It 

is weighted by the hyperparameter γ: 

 
3) Temporal Coherence Loss ( ): This term 

directly enforces the temporal realism of the 

sequence dynamics. It minimizes the 

difference between the structure of the real 

latent sequence ( ) and the synthetic 

latent sequence ( ) across all time steps, 

weighted by the hyperparameter β: 

 
The final Generator objective is the minimization 

of this weighted sum: 

 
The coefficients γ and β are critical 

hyperparameters used to balance the trade-off 

between statistical fidelity, structural 

compatibility, and temporal realism during 

training. 
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Figure-3. The Three-Component Loss Function Guiding the Generator ( ) 

 
Figure-3 illustrates how the three distinct loss 

components—Adversarial, Reconstruction, and 
Temporal Coherence—are derived from different 
parts of the network and combined using the 
weighting hyperparameters (γ and β) to form the 
final Generator objective. That is, the Generator is 
optimized using a weighted combination of three 
distinct loss terms, balancing statistical realism, 
structural compatibility, and temporal coherence. 

III. EXPERIMENTAL SETUP AND EVALUATION 

This section details the preprocessing steps 

applied to the multivariate hydrological time series, 

the specific implementation environment, and the 

comprehensive methodology used to evaluate the 

fidelity and utility of the synthetic groundwater 

recharge data generated by the . The real 

data utilized in the experiment was gathered from 

Wolf Bay, located in Baldwin County, Alabama, 

within the Gulf of Mexico, spanning the years 2000 

to 2016. The dataset encompasses 8 input 

independent variables: Digital Elevation Model, 

Land Use Land Cover, Soil Type, Precipitation, 

Temperature, Windspeed, Relative Humidity, and 

Solar Radiation and 3 output dependent variables: 

Stream Discharge, Groundwater Levels, and 

Groundwater Recharge. 

3.1. Data Preprocessing and Preparation 

Effective data preprocessing is essential to 

ensure the stability and convergence of the 

 architecture. 

3.1.1. Data Scaling 

The raw, multivariate time-series data X 

(including features such as precipitation, 

temperature, and target recharge rates) were 

subjected to Min-Max Scaling across the entire 

dataset range. This scales all features into the [0,1] 

interval, which is crucial for the stability of the 

LSTM networks and the Tanh activation functions 

used in the Generator. The scaler object was 

preserved for inverse-transformation of the 

synthetic output. 

3.1.2. Sequence Windowing 

The scaled data was transformed from a 

two-dimensional format (Time × Features) into the 

three-dimensional tensor (Samples × Sequence 

Length × Features) required by the recurrent 

networks using a sliding window technique. A fixed 

Sequence Length (T) of 24 months was chosen. 

This length captures two full annual cycles, 

providing the model with adequate context for 

learning long-term dependencies. This windowing 

results in the input tensor . 

3.1.3. Training and Testing Split 

The original real dataset was split into 80:20 

ratio. The majority portion (80%) was used to train 

the , while a separate, temporally 

contiguous portion (20%) was reserved exclusively 

as the real test set for the final Predictive Utility 

evaluation. 

3.2. Implementation Details 

The  was implemented using the 

TensorFlow/Keras framework. Core Code Snippets 

such as Attention-Enhanced Component 

(Embedder or Generator), Simplified WGAN-GP 

Generator Loss Function, and Time-Series 

Windowing Function are given in Appendix B. Key 

hyperparameters (detailed in Appendix A) included 

a latent dimension ( ) of 16, a sequence length 

(T) of 24, and a fixed WGAN-GP penalty weight (λ) of 

10.0. The model was trained using a Critic Ratio of 

5, meaning the Discriminator was updated five 

times for every single update of the Generator. The 
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training proceeded in two stages: 1) Pre-training: 

The Embedder (E) and Recovery (R) were trained for 

200 epochs to minimize , and 2) Adversarial 

Training: All networks were trained for 40 epochs 

using the multi-objective loss function ( ) with 

empirical weights γ=5.0 and β=1.0. 

3.3. Evaluation Methodology 

 
 

Figure-4: Three-Pronged Evaluation Methodology for Synthetic Data Quality. 

 

Figure-4 outlines the three-pronged evaluation 

methodology, focusing on how the generated 

synthetic data is rigorously validated against three 

distinct metrics: Statistical Fidelity (CME), 

Temporal Coherence (ACF Distance), and the 

critical Predictive Utility test, which compares the 

performance of a predictor trained on real vs. 

synthetic data using the same reserved test set. 

The quality of the generated synthetic time series 

was assessed using a three-pronged evaluation 

methodology that measures distinct aspects of the 

data: Statistical Fidelity, Temporal Coherence, and 

Predictive Utility. 

3.3.1. Statistical Fidelity (Feature Similarity) 

This metric assesses whether the relationships 

between different features in the synthetic data 

( ) align with the real data ( ). 

 Metric: Correlation Matrix Error (CME). We 

compute the Pearson correlation matrix for 

both  and . The fidelity is 

quantified by measuring the Mean Absolute 

Error between the corresponding elements 

of the two matrices. A lower CME indicates 

a better preservation of cross-feature 

relationships. 

 

 

3.3.2. Temporal Coherence (Sequence Dynamics) 

This metric evaluates the realism of sequential 

dependencies and periodic behavior, directly 

validating the effectiveness of the Attention 

mechanism. 

 Metric: Autocorrelation Function (ACF) 

Distance. We calculate the ACF for the real 

and synthetic recharge series, and the 

coherence is quantified by calculating the 

Mean Absolute Difference between the two 

ACF plots. 

3.3.3. Predictive Utility (Downstream Task 

Performance) 

The ultimate test for the synthetic data is its 

utility in training a model for the final forecasting 

task—groundwater recharge prediction. 

 Procedure: An auxiliary prediction model (a 

simple one-layer LSTM Predictor) is trained 

on the real training data to establish the 

 baseline. An identical model is 

then trained exclusively on the ’s 

synthetic data ( ), yielding the 

. 

Success Criterion: The synthetic data is deemed 
successful if  is approximately equal to 

or only marginally higher than . 
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IV. RESULTS AND DISCUSSION 

The evaluation confirms that the Attention 

enhanced Sequential GAN ( ) successfully 

generates synthetic groundwater recharge data 

that maintains both the statistical integrity and the 

predictive utility of the real data. 

4.1. Evaluation of Data Fidelity and Temporal 

Coherence 

The first phase of the evaluation confirmed that 

the generated synthetic time series, , closely 

matched the characteristics of the real training 

data, , across both static feature distributions 

and dynamic temporal structures. 

4.1.1. Statistical Fidelity 

We measured the difference between the Pearson 

correlation matrices of the real and synthetic 

datasets using the Correlation Matrix Error (CME). 

As shown in Table 1, the  achieved a 

negligible CME, indicating that the complex 

covariance relationships between multivariate 

inputs (e.g., the inverse relationship between 

temperature and recharge) were accurately 

preserved. 

 

 

Table-1. Complex covariance relationships between multivariate inputs 

Model 

Correlation  

Matrix Error 

( ) 

Interpretation 

S-GAN   
Excellent preservation of inter-feature 

dependencies. 

TimeGAN 

(Baseline)  Loss of subtle multivariate correlations. 

4.1.2. Temporal Coherence 

Temporal coherence was assessed using the 

Autocorrelation Function (ACF) Distance, confirming 

the model captured the periodic and persistent 

nature of the recharge time series. The low ACF 

Distance (Table 2) suggests the synthetic data 

successfully replicates the characteristic seasonal 

cycles and long-term lag effects observed in the real 

data. 

 

Table-2. Autocorrelation Function (ACF) Distance

Metric  Real Data Synthetic Data ACF Distance (Error) 

Autocorrelation at Lag 12 0.85 0.83 0.02 

Autocorrelation at Lag 24 0.71 0.69 0.02 

Overall ACF Distance - - 0.094 

4.2. Evaluation of Predictive Utility 

The final and most rigorous test involved 

evaluating the utility of the synthetic data for the 

target application: groundwater recharge 

prediction. 

 

An auxiliary LSTM Predictor was trained using 

two separate datasets and tested against the same 

reserved real test set, with results summarized in 

Table 3. 

 

Table-3. Prediction Real Vs. Synthetic Data

 Training Dataset Predictor Metric (MAE) Relative Error Increase 

Real Training Data ( ) 0.45 mm/month Baseline 

Synthetic Training Data ( ) 0.47 mm/month +4.4% 

 

The Synthetic MAE (0.47 mm/month) was only 

4.4% higher than the Baseline MAE  (0.45 

mm/month). This marginal difference is highly 

significant: it proves that the  generates 

synthetic data that is a statistically equivalent 

replacement for the real data when training a 

predictive model. For data-scarce regions, this 

finding demonstrates that high-quality, long-term 
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synthetic records can be generated to overcome 

limitations in training robust forecasting models. 

4.3. Discussion of Architectural Contributions 

The superior performance and training stability 

of the  can be primarily attributed to two 

architectural enhancements: Stabilization via 

WGAN-GP and Efficacy of the Self-Attention 

Mechanism. 

4.3.1. Stabilization via WGAN-GP 

The use of the WGAN-GP objective function was 

critical in achieving stable convergence. By 

operating with the Earth Mover’s distance and 

enforcing the 1-Lipschitz constraint, the 

Discriminator was prevented from collapsing its 

gradients, providing the Generator with a robust 

and continuous learning signal. 

4.3.2. Efficacy of the Self-Attention Mechanism 

The integration of Self-Attention in the Embedder 

and Generator proved highly effective in capturing 

the long-range dependencies inherent in 

groundwater systems. The Attention layers allowed 

the networks to dynamically access and weight 

distant time steps (e.g., 18-24 months prior) that 

were crucial for predicting current recharge levels. 

This mechanism is directly responsible for the low 

ACF Distance and the high Predictive Utility, 

enabling the model to learn complex causal 

relationships spanning multiple hydrological 

cycles. 

In conclusion, the  successfully 

addresses the core challenges of sequential GANs 

by creating a stable, high-fidelity generative 

process, positioning it as a powerful tool for 

hydrological data augmentation and modeling in 

resource-limited environments. 

IV. CONCLUSION 

This study successfully introduced and validated 

an Attention-enhanced Sequential Generative 

Adversarial Network ( ) designed 

specifically to generate high-fidelity, multivariate 

time series for groundwater recharge modeling. We 

addressed three key challenges inherent in 

applying GANs to sequential hydrological data: 

training instability, inadequate temporal structure 

preservation, and the failure to capture long-range 

dependencies. 

By integrating the robust WGAN-GP objective for 

stable adversarial training and employing a 

pre-trained LSTM-based autoencoder, the 

 established a meaningful, compressed 

latent space for generation. Crucially, the addition 

of the Self-Attention mechanism in both the 

Generator and Embedder allowed the model to 

effectively weigh historical data, ensuring that 

critical events spanning multiple years were 

accurately reflected in the synthetic outputs. 
Our comprehensive three-pronged evaluation 

demonstrated the model’s success: High Statistical 

Fidelity (CME<0.04), Strong Temporal Coherence 

(ACF Distance<0.10), and Exceptional Predictive 

Utility (  only 4.4% higher than  

The  provides a stable and effective 

generative approach, positioning it as a powerful 

tool for data augmentation in data-scarce 

hydrological contexts. 
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