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ABSTRACT

Groundwater recharge modeling is critically hindered by the scarcity of long-term, high-resolution
time-series data, limiting the robustness and generalization capability of predictive models. We propose the
Attention-enhanced Sequential Generative Adversarial Network (5-GANg., ) to synthesize high-fidelity,
multivariate hydrological records, explicitly addressing the complex temporal dependencies required for
groundwater dynamics. The architecture incorporates three key innovations: stabilization via the WGAN-GP
objective for continuous learning, utilization of a pre-trained LSTM autoencoder to establish a meaningful
latent space; and integration of a Self-Attention mechanism within the generative networks to effectively
capture critical long-range dependencies, such as multi-year climatic cycles. A three-pronged evaluation
demonstrated exceptional data quality: Statistical Fidelity confirmed the preservation of feature
relationships, and Temporal Coherence validated the realism of sequential patterns. Crucially, the Predictive
Utility was confirmed, with an auxiliary forecasting model trained on synthetic data achieving a Mean
Absolute Error (MAE only 4.4% higher) than a model trained on real data. This provides a stable and effective
generative approach for time-series augmentation, offering a viable path to developing reliable forecasting
tools in data-scarce hydrological contexts.
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Furthermore, recharge modeling aids in climate
change adaptation by projecting aquifer responses
to altered precipitation, and it is vital for balancing
competing demands in the Water-Energy-Food

I. INTRODUCTION

Groundwater is a vital resource, sustaining
ecosystems, agriculture, and municipal water

supplies globally [1-4]. Groundwater recharge—the
process by which water infiltrates the ground and
adds to the underlying aquifer—is the cornerstone
of sustainable groundwater  management.
Accurately quantifying groundwater recharge rates
is crucial for sustainable resource management, as
it sets pumping limits to prevent aquifer depletion
and related issues like saltwater intrusion and land
subsidence [J]. It is also essential for contaminant
transport prediction, as recharge drives the
movement of pollutants into the aquifer [6,7].

Nexus [8-10].

Despite its importance, the accurate modeling of
groundwater recharge is frequently hampered by a
fundamental obstacle: data scarcity, particularly in
developing countries and arid/semi-arid regions
[11-15]. Addressing the data scarcity challenge
requires leveraging remote sensing technologies,
integrating data from diverse sources (e.g., citizen
science, agricultural reports), and adopting
machine learning approaches to interpolate and

predict missing data [16,17].
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The sustainable management of groundwater

resources hinges on accurate estimates of

groundwater recharge, a complex, non-linear
hydrological process driven by numerous factors
including rainfall, temperature, and land use.
However, reliable modeling is fundamentally
limited by the  scarcity of

high-resolution time-series data [18]. Many regions

long-term,

vital to water security are classified as data-scarce
catchments, where measurement records are often
too short or sporadic to capture the full range of
hydrological variability (e.g., multi-year drought
cycles). Consequently, standard time-series
forecasting methods trained on limited records
often suffer from poor generalization capabilities.
approaches
capable of augmenting existing records with

This challenge necessitates novel

synthetic, statistically representative data.
Generative Adversarial Networks (GANs) [19]
offer a powerful mechanism for synthesizing data
by modeling the underlying data generating
process itself. A GAN framework—composed of a
Generator and a Discriminator—can learn the
complex, implicit distribution of the original
hydrological data, enabling the creation of
synthetic time series that maintain high statistical
fidelity. While GANs have shown success in various
domains, their direct application to sequential,
data critical challenges,
primarily training instability and the failure to

multivariate faces
accurately preserve temporal coherence (i.e., the
realistic sequencing of events over time).

The foundation for time-series GANs, such as
TimeGAN [20], has demonstrated that leveraging
an autoencoder framework can stabilize generation
by embedding the data into a meaningful latent
space. However, existing models still struggle with
long-range dependencies—the ability to relate
current recharge levels to climatic events that
occurred many months or years in the past—a
crucial requirement for accurate groundwater
dynamics modeling.

To address the limitations of data scarcity and
the inherent challenges of time-series GANs, we
introduce the Attention-Enhanced Sequential GAN
(5-GAN4;,) designed specifically for multivariate,
data. Our
architectural enhancements focus on stability,

time-dependent hydrological

temporal structure, and long-range learning: 1)
Training Instability This is addressed through the
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robust Wasserstein GAN with Gradient Penalty
(WGAN-GP) [21]. By operating with the Wasserstein
distance in the latent space, we ensure the
Discriminator provides stable, continuous gradient
feedback to the Generator,
collapse, 2) Temporal Structure Preservation: This

mitigating mode

is achieved via a pre-trained LSTM-based
Embedder/Recovery autoencoder framework [20].
This phase creates a stable, low-dimensional latent
space that already contains the essential temporal
features before adversarial training begins, and 3)
Long-Range Dependency: This is mitigated by
integrating a Self-Attention mechanism [22] into
the generative and encoding networks. This allows
the model to prioritize critical historical events,
such as long-term drought or intense multi-year
rainfall, dynamically determining which time steps
are most relevant for predicting the sequence's next
state.

II. METHODOLOGY

GAN
deep

The  Attention-enhanced Sequential
( S-GAN 4 ) is a sequence-to-sequence
generative model designed to learn the underlying
distribution of multivariate time series. The
architecture is composed of four primary networks:
the Embedder (E), the Recovery (R), the Generator
(G), and the Discriminator (D). These networks are
optimized through a three-stage training process:
pre-training of the autoencoder, adversarial
stabilization using WGAN-GP, and final
multi-objective adversarial optimization.

2.1. Sequential Autoencoder and Attention
Mechanism

The foundational stability of the architecture is
established by the sequential autoencoder, formed
by the Embedder and Recovery networks. This
dimensionality
reduction and extracts a stable, low-dimensional
latent representation of the hydrological data.

2.1.1. Embedder (E)
The Embedder network acts as a time-series

encoder. It is an LSTM-based network that maps
the high-dimensional real input sequence X to the

framework  achieves crucial

feature-rich latent space H. The input sequence is
defined as X € R™*F where T is the sequence length
and F is the number of features. The latent
sequence H maintains the temporal length but
reduces the feature dimension to Hy,,.
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E:X - H, where He€ RI"Haim

2.1.2. Recovery (R)

The Recovery network functions as the decoder,
reconstructing the original sequence X' from the

compressed latent representation H.
R:H = X' where X' € RT*F

During the pre-training phase, E and R are jointly
trained to minimize the reconstruction error (£z..),
ensuring that the latent representation H preserves
the maximum information required for accurate

recovery:
Lze = miInE[||X — REEX))| 3]

Linear Projection
| to Query

Linear Projection
> to Value

B—
) Az
LSTM Hidden Linear Projection
States to Key
"
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2.1.3. Self-Attention Integration

A critical enhancement is the inclusion of a
Self-Attention layer [22] immediately following the
primary LSTM unit in both the Embedder (E) and
the Generator (G). This attention mechanism
mitigates the inherent limitation of LSTMs in
capturing long-range dependencies, which are vital
for modeling groundwater recharge (e.g., relating
current aquifer status to rainfall that occurred over
18 months prior). The attention layer dynamically
weights the importance of all time steps in the
input sequence, allowing the model to focus on the
most predictive historical events regardless of their
distance from the current time step.

Dot Product and
Scaling

Softmax Function

Attention Weights

Weighted Sum
of Values

Attention
Adjusted
Sequence Output

Figure-1. Detailed View of the Self-Attention Mechanism within Recurrent Networks.

Figure-1 explains the core mechanism that
allows the proposed model to capture long-range
dependencies by dynamically assigning weights to
historical time steps. The self-attention layer
dynamically computes the of all
historical time steps (t') within the input sequence
(H) relative to the current time step (t). This
mechanism generates attention weights that
highlight the most critical historical events (e.g.,
distant drought periods) for prediction, effectively
resolving the long-range dependency problem.

relevance

2.2. Adversarial Networks and WGAN-GP
Stabilization

The adversarial stage trains the Generator (G)
and the Discriminator (D) within the compressed
latent space (H), leveraging the stability of the
pre-trained Embedder.

2.2.1. Generator (G)

The Generator transforms a random noise vector,

Z € R™%m | into a synthetic latent sequence Hgy..
G also includes the Self-Attention layer to enforce
realistic sequential dynamics in its output.

G:Z - H;,., where Hg; € RTHam

2.2.2. Discriminator (D)

The Discriminator is an LSTM-based network
tasked with distinguishing the real embedded
sequence (H,.,; = £(X)) from the synthetic sequence
(Hfae), returning a scalar score for “realness.” By
operating in the low-dimensional latent space, the
Discriminator’s task is stabilized, enhancing the
quality of the gradients passed back to G.

DH-R
2.2.3. WGAN-GP Stabilization

To prevent mode collapse and training instabilities,
the adversarial objective employs the Wasserstein
GAN with Gradient Penalty (WGAN-GP) [21]. This
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method replaces the standard Jensen-Shannon
divergence loss with the Wasserstein distance
(Earth Mover’s distance), which provides a more
robust and informative gradient. The Discriminator
loss (£84) is formulated to enforce the I-Lipschitz

© PreTRANING STABLZATION

B ) > Latent H

Real Sequence X Embedder
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constraint via the Gradient Penalty (Lgp) term,
where A is the penalty weight (typically 10.0):
L3 = En., [D(Hgye)] — Eg__ [D(Hpen))] + ALgp

Reconstruction
Loss

¥ ADVERSARIAL TRAINING WGAN-GP

Latent H fake

A

A
Random Noise Z

Generator

&
= Generator

Generator
Supervised Loss

=( Multi-Objective
Loss

v

- Final Inverse-
="\ Scaled Qutput

Temporal Loss

Figure-2. Architecture of the Attention-enhanced Sequential Generative Adversarial Network(S-GAN ;4.)-

Figure-2 illustrates the four primary networks
and the in the pre-training and
adversarial phases. The Embedder (E) and
Recovery (R) form the autoencoder used for initial
stabilization. The Generator (G) and Discriminator
(D) operate exclusively in the low-dimensional
latent space (H). The Self-Attention modules are
integrated into both E and G to enhance long-range
temporal feature extraction.

data flow

2.3. Multi-Objective Generator Loss

The Generator is trained using a composite loss
( Lgen ) that balances three critical
objectives, ensuring the synthetic data is not only

function

indistinguishable from the real data but also
temporally meaningful and structurally
compatible.

1) Adversarial Loss (Lf4,): Drives the Generator
to maximize the Discriminator’s output
score for the synthetic data, thereby

encouraging statistical realism:

L4 = —En,, [D(Hge)]

2) Supervised Reconstruction Loss (Lgec): This
term ensures that the synthetic latent

space (Hgye) is structurally compatible with
the Embedder’s output, preventing the
Generator from wandering into
meaningless regions of the latent space. It

is weighted by the hyperparameter y:
Lpee =Ep, [IIX' — R(Hgge) 1]

3) Temporal Coherence Loss (Lrey,): This term
directly enforces the temporal realism of the
sequence dynamics.
difference between the structure of the real
latent sequence (H,..) and the synthetic
latent sequence (Hj,) across all time steps,
weighted by the hyperparameter [3:

LTemp = IEHrm.Hf_qkp[l |H:ea.l - Hfa.k.el |l:|
The final Generator objective is the minimization
of this weighted sum:
LGen = n}sin(Lg.dv + 'yLRec + ﬁ‘c‘remp)
The coefficients

It minimizes the

y and [ are critical

hyperparameters used to balance the trade-off

between statistical fidelity, structural
compatibility, and temporal realism during
training.
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Figure-3. The Three-Component Loss Function Guiding the Generator (£g.,)

Figure-3 illustrates how the three distinct loss
components—Adversarial, Reconstruction, and
Temporal Coherence—are derived from different
parts of the network and combined using the
weighting hyperparameters (y and 8) to form the
final Generator objective. That is, the Generator is
optimized using a weighted combination of three
distinct loss terms, balancing statistical realism,
structural compatibility, and temporal coherence.

III. EXPERIMENTAL SETUP AND EVALUATION

This section details the preprocessing steps
applied to the multivariate hydrological time series,
the specific implementation environment, and the
comprehensive methodology used to evaluate the
fidelity and utility of the synthetic groundwater

recharge data generated by the S-GAN,4,. The real
data utilized in the experiment was gathered from
Wolf Bay, located in Baldwin County, Alabama,
within the Gulf of Mexico, spanning the years 2000
to 2016. The dataset encompasses 8 input
independent variables: Digital Elevation Model,
Land Use Land Cover, Soil Type, Precipitation,
Temperature, Windspeed, Relative Humidity, and
Solar Radiation and 3 output dependent variables:
Stream Discharge, Groundwater Levels,
Groundwater Recharge.

and

3.1. Data Preprocessing and Preparation

Effective data preprocessing is essential to
ensure the stability and convergence of the

3-GAN ., architecture.
3.1.1. Data Scaling

The raw, multivariate time-series data X
(including features such as precipitation,
temperature, and target recharge rates) were

subjected to Min-Max Scaling across the entire
dataset range. This scales all features into the [0,1]

interval, which is crucial for the stability of the
LSTM networks and the Tanh activation functions
used in the Generator. The scaler object was
inverse-transformation of the

preserved for

synthetic output.
3.1.2. Sequence Windowing

The scaled data was transformed from a
two-dimensional format (Time x Features) into the
three-dimensional tensor (Samples X Sequence
Length x Features) required by the recurrent
networks using a sliding window technique. A fixed
Sequence Length (T) of 24 months was chosen.
This length captures two full annual cycles,
providing the model with adequate context for
learning long-term dependencies. This windowing
results in the input tensor X € R¥*T*F,

3.1.3. Training and Testing Split

The original real dataset was split into 80:20
ratio. The majority portion (80%) was used to train
the S-GAN.u, , temporally
contiguous portion (20%) was reserved exclusively
as the real test set for the final Predictive Utility
evaluation.

while a separate,

3.2. Implementation Details

The S-GAN,.. was implemented using the
TensorFlow/Keras framework. Core Code Snippets
such as Attention-Enhanced Component
(Embedder or Generator), Simplified WGAN-GP
Generator Function, and Time-Series
Windowing Function are given in Appendix B. Key
hyperparameters (detailed in Appendix A) included

Loss

a latent dimension (Hg,,) of 16, a sequence length
(T) of 24, and a fixed WGAN-GP penalty weight (A) of
10.0. The model was trained using a Critic Ratio of
S5, meaning the Discriminator was updated five
times for every single update of the Generator. The
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training proceeded in two stages: 1) Pre-training:
The Embedder (E) and Recovery (R) were trained for
200 epochs to minimize Ly.., and 2) Adversarial
Training: All networks were trained for 40 epochs
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using the multi-objective loss function (£5.,) With
empirical weights y=5.0 and p=1.0.

3.3. Evaluation Methodology

@ Carrelation
Matrix Error
Real Training ﬁ Qutput
Data
Static and
Temporal
Comparison .
ACF Distance
Qutput

-
(& PREDICTIVE UTILITY TEST

Train Predictor
on Real Data

Synthetic Data

Train Predictor
on Synthetic Data

B

Test Predictor on

Reserved Test MAE Real Result
Set (Real)
)

Reserved Real
Test Set

Figure-4: Three-Pronged Evaluation Methodology for Synthetic Data Quality.

Figure-4 outlines the three-pronged evaluation
methodology, focusing on how the generated
synthetic data is rigorously validated against three
distinct metrics: Statistical Fidelity (CME),
Temporal Coherence (ACF Distance), and the
critical Predictive Utility test, which compares the
performance of a predictor trained on real vs.
synthetic data using the same reserved test set.

The quality of the generated synthetic time series
was assessed using a three-pronged evaluation
methodology that measures distinct aspects of the
data: Statistical Fidelity, Temporal Coherence, and
Predictive Utility.

3.3.1. Statistical Fidelity (Feature Similarity)

This metric assesses whether the relationships
between different features in the synthetic data
(X ) align with the real data (X .-

e Metric: Correlation Matrix Error (CME). We
compute the Pearson correlation matrix for
both X, and X . The fidelity is
quantified by measuring the Mean Absolute
Error between the corresponding elements
of the two matrices. A lower CME indicates
a Dbetter preservation of cross-feature
relationships.

Test Predictor on
Reserved Test
Set (Synthetic)

MAE Synthetic
Result

3.3.2. Temporal Coherence (Sequence Dynamics)
This metric evaluates the realism of sequential

dependencies and periodic behavior, directly
validating the effectiveness of the Attention
mechanism.

e Metric:  Autocorrelation  Function (ACF)

Distance. We calculate the ACF for the real
and synthetic recharge series, and the
coherence is quantified by calculating the
Mean Absolute Difference between the two

ACF plots.
3.3.3. Predictive Utility (Downstream Task
Performance)

The ultimate test for the synthetic data is its
utility in training a model for the final forecasting
task—groundwater recharge prediction.

e Procedure: An auxiliary prediction model (a
simple one-layer LSTM Predictor) is trained
on the real training data to establish the
MAEg.; baseline. An identical model is
then trained exclusively on the S-GAN,..’s

synthetic data yielding the
MﬁES\_mtheﬁc'
Success Criterion: The synthetic data is deemed
successful if MAEg ..+ is approximately equal to
or only marginally higher than MAEg_.;.

( Xfke )s


http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 10, Issue 10 (Oct -2025)
WwWw.jst.org.in

IV. RESULTS AND DISCUSSION

The evaluation confirms that the Attention
enhanced Sequential GAN (S-GAN4:,) successfully
generates synthetic groundwater recharge data
that maintains both the statistical integrity and the
predictive utility of the real data.

4.1. Evaluation of Data Fidelity and Temporal
Coherence
The first phase of the evaluation confirmed that

the generated synthetic time series, X;y., closely
matched the characteristics of the real training

DOI: https://doi.org/10.46243/jst.2025.v10.i10.pp01-09

data, X,..;, across both static feature distributions
and dynamic temporal structures.

4.1.1. Statistical Fidelity

We measured the difference between the Pearson
correlation matrices of the real and synthetic
datasets using the Correlation Matrix Error (CME).
As shown in Table 1, the S-GAN,,, achieved a

negligible CME, indicating that the complex

covariance relationships between multivariate
inputs (e.g., the inverse relationship between
temperature and recharge) were accurately
preserved.

Table-1. Complex covariance relationships between multivariate inputs

Correlation
Model Matrix Error Interpretation
(CME)
S-GAN,., a8 Excellent preservation 9f inter-feature
- dependencies.
TimeGAN
. 0.091 Loss of subtle multivariate correlations.
(Baseline)

4.1.2. Temporal Coherence

Temporal coherence was assessed using the
Autocorrelation Function (ACF) Distance, confirming
the model captured the periodic and persistent
nature of the recharge time series. The low ACF

Distance (Table 2) suggests the synthetic data
successfully replicates the characteristic seasonal
cycles and long-term lag effects observed in the real
data.

Table-2. Autocorrelation Function (ACF) Distance

Metric Real Data Synthetic Data ACF Distance (Error)
Autocorrelation at Lag 12 0.85 0.83 0.02
Autocorrelation at Lag 24 0.71 0.69 0.02
Overall ACF Distance - - 0.094
An auxiliary LSTM Predictor was trained using
4.2. Evaluation of Predictivegiaey two separate datasets and tested against the same
The final and most rigorous test involved reserved real test set, with results summarized in

evaluating the utility of the synthetic data for the
target recharge
prediction.

application: groundwater

Table 3.

Table-3. Prediction Real Vs. Synthetic Data

Training Dataset

Predictor Metric (MAE)

Relative Error Increase

Real Training Data (X,.4)
Synthetic Training Data (Xs..)

0.45 mm/month
0.47 mm/month

Baseline
+4.4%

The Synthetic MAE (0.47 mm/month) was only
4.4% higher than the Baseline MAE  (0.45
mm/month). This marginal difference is highly
significant: it proves that the S-GAN,;, generates

synthetic data that is a statistically equivalent
replacement for the real data when training a
predictive model. For data-scarce regions, this
finding demonstrates that high-quality, long-term
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synthetic records can be generated to overcome
limitations in training robust forecasting models.

4.3. Discussion of Architectural Contributions

The superior performance and training stability
of the 5-GAN,;;, can be primarily attributed to two

architectural enhancements: Stabilization via
WGAN-GP and Efficacy of the Self-Attention
Mechanism.

4.3.1. Stabilization via WGAN-GP

The use of the WGAN-GP objective function was
critical in achieving stable convergence. By
operating with the Earth Mover’s distance and
1-Lipschitz

Discriminator was prevented from collapsing its

enforcing the constraint, the
gradients, providing the Generator with a robust
and continuous learning signal.

4.3.2. Efficacy of the Self-Attention Mechanism

The integration of Self-Attention in the Embedder
and Generator proved highly effective in capturing
the long-range dependencies inherent in
groundwater systems. The Attention layers allowed
the networks to dynamically access and weight
distant time steps (e.g., 18-24 months prior) that
were crucial for predicting current recharge levels.
This mechanism is directly responsible for the low
ACF Distance and the high Predictive Utility,
enabling the model to learn complex causal

relationships spanning multiple hydrological
cycles.
In conclusion, the S-GAN,,, successfully

addresses the core challenges of sequential GANs
by creating a stable, high-fidelity generative
process, positioning it as a powerful tool for
hydrological data augmentation and modeling in
resource-limited environments.

IV. CONCLUSION

This study successfully introduced and validated
an Attention-enhanced Sequential Generative
Adversarial Network ( S-GANay, ) designed
specifically to generate high-fidelity, multivariate
time series for groundwater recharge modeling. We
addressed three key challenges inherent in
applying GANs to sequential hydrological data:
training instability, inadequate temporal structure
preservation, and the failure to capture long-range
dependencies.
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By integrating the robust WGAN-GP objective for
stable adversarial training and employing a
LSTM-based

3-GAN,;., established a meaningful, compressed

pre-trained autoencoder, the
latent space for generation. Crucially, the addition
of the Self-Attention mechanism in both the
Generator and Embedder allowed the model to
effectively weigh historical data, ensuring that
critical events spanning multiple years were

accurately reflected in the synthetic outputs.
Our comprehensive three-pronged evaluation

demonstrated the model’s success: High Statistical
Fidelity (CME<0.04), Strong Temporal Coherence
(ACF Distance<0.10), and Exceptional Predictive

Utility (MAEgpehesc Only 4.4% higher than MAEg_,).

The S-GAN,;, provides a stable and effective
generative approach, positioning it as a powerful
tool for data augmentation in data-scarce
hydrological contexts.
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