SOME LIFT AND STRUCTUR FROM A MANIFOLD TO ITS TANGENT BUNDLE

Dr.B.P. Yadav

Department of Mathematics, Allahabad Degree College, Allahabad

To Cite this Article Dr.B.P. Yadav[,] "SOME LIFT AND STRUCTUR FROM A MANIFOLD TO ITS TANGENT BUNDLE" Journal of Science and Technology, Vol. 02, Issue 01, - Jan-Feb 2017, pp66-75

Article Info

Received: 29-01-2017 Revised: 07-02-2017 Accepted: 17-02-2017 Published: 27-02-2017

Abstract:

In this paper, Lift of Tensor field, almost complex structures, F-structure and Para compact structures are studied.

1. Lift of tensor fields:

Let V be a n-dimensional differentiable manifold and T(V) is its tangent bundle. The projection being denoted by $\pi: T(V) \to V$ for a differentiable function Ψ in V. The function $\pi^* \Psi$ induced from Ψ in T(V) is denoted by

(1.1)
$$\pi^V \psi = \pi^* \psi$$

and is called the vertical lift of function Ψ . Any 1-form \mathscr{O} given in differentiable manifold V is, in natural way, regarded as a function in T(V), which we be denoted by $l\mathscr{O}$. If we are given a vector field X in V, then we define a vector field X^V in T(V) by

(1.2)
$$X^{v}(\iota\omega) = (\omega(X))^{v}$$

 \mathscr{O} being an arbitrary 1 - form in V. The vector Field X^V thus defined is called the vertical lift of the vector field X.

We define the vertical lift of (1.1) type $d\psi$ and $\theta d\psi$ by (1.3) by

(1.3) $(d\psi)^V = d(\psi)^V$ and $(\theta d\psi)^V = \theta^V (d\psi)^V$ respectively ψ and θ being arbitrary function in V and the vertical lift ω^V of an arbitrary $1 - form \, \omega$ in V by *Published by: Longman Publishers* www.jst.org.in

Page | 66

 ISSN: 2456-5660 Volume 2, Issue 01 (Jan -Feb 2017)

 www.jst.org.in

 DOI: https://doi.org/10.46243/jst.2017.v2.i01.pp66-75

(1.4)
$$\omega^{V} = (\omega_{\alpha})^{V} (dx^{\alpha})^{V}$$

In each open set $\pi^{-1}(U)$, where U is a co-ordinates neighborhood with local coordinates (X^h) in V and ω is given by $\omega = \omega_{\alpha} dx^{\alpha}$

in U. It is easily verified that the vertical lift ω^{V} of 1 - form defied by (1.4) in each $\pi^{-1}(U)$ is a global 1 - form in tangent bundle. When there is given function Ψ in V, we put

(1.5)
$$\psi^{H} = \psi^{C} - \nabla_{\gamma} \psi_{\text{In}} T(V)$$
, where $\nabla_{\gamma} \psi = (\nabla_{\gamma} \psi)$ and all the functions ψ^{H} defined in $T(V)$.

The horizontal lift of the function Ψ for a vector field X given in V. we define a vector field in tangent bundle by

(1.6) $X^{H}\psi^{H} = X^{C}\psi^{H} - (\nabla_{\gamma}X)\psi^{H}\psi$ being an arbitrary function in V and call ψ^{H} the horizontal lift of vector field X, where ∇ denotes the affine connection.

Given $1 - form \ \psi$ in V, we define ω^H in T(V) by

(1.7) $\omega^{H}(X^{H}) = 0_{X \text{ being an arbitrary vector field in V, the } 1 - form \omega^{H}$ thus defined in T(V) is called the Horizontal lift

(1.8) $F^{H}X^{H} = (FX)^{H} \text{ and } F^{X}X^{H} = 0 \text{ for any } X \in V \text{ We define Vertical lift } S^{V} \text{ and}$ Horizontal lift S^{H} in T(V) for a tensor field S of type (1.2) given in V as

(1.9)
$$S^{V}(X^{C},Y^{C}) = (S(X,Y))^{V}$$
 and $S^{H}(X^{H},Y^{H}) = (S(X,Y))^{H}$

X and Y being arbitrary vector fields in V.We shall now give local representation of the lifts. Let $(U(X^h))$ be a coordinate neighborhood of differential manifold V, where (x^h) is a system of local coordinates defined in U. Let (y^h) be the system of Cartesian coordinates in each tangent space $T_p(V)$ of V at P with respect to $\frac{\partial}{\partial x^h}$, where P is an arbitrary point in U, there is an open set $\pi^{=1}(U)$ of T(U), where $p \in U$, then in the open set $\pi^{=1}(U)$ of T(U), we can introduce local coordinates (x^h, y^h) , which are called coordinate induced in $\pi^{=1}(U)$ from (x^h) . Let there be a given function $\Psi(x^h)$ in U, then its vertical lift Ψ^V and its horizontal lift Ψ^H represented as *Published by: Longman Publishers* www.jst.org.in

ISSN: 2456-5660 Volume 2, Issue 01 (Jan -Feb 2017)

 $\frac{WWW.jst.org.in}{DOI: https://doi.org/10.46243/jst.2017.v2.i01.pp66-75}$ (1.10) $\psi^{V} = \psi(x^{h})_{\text{and}} \psi^{H} = \psi^{C} - \nabla_{\gamma} \psi(x^{h})_{\text{In}} \pi^{=1}(U)_{\text{with respect to induced coordinates}}$ $\left(x^{h}, y^{h}\right)_{\text{where}} \partial = y^{\alpha} \frac{\partial}{\partial x^{\alpha}}$

If a vector field X has components X^H in U, then its vertical lift X^V and its horizontal lift X^H have $X^V : \begin{pmatrix} 0 \\ x^h \end{pmatrix}$

respectively component of the form (1.11)

$$X^{H} : \begin{pmatrix} X^{h} \\ -\Gamma^{h}_{\alpha} x^{\alpha} \end{pmatrix}$$

In $\pi^{=1}(U)$ with respect to induced coordinates $(x^h, y^h)_{\text{If }1-\text{form}_{V}\text{ has components}} \omega_{\alpha} \in U$, hen its vertical lifts ω^V and its horizontal lifts ω^H have respectively components of the form

(1.12) $\omega^{V}:(\omega_{\alpha},0)_{\text{and}} \quad \omega^{H}:(\Gamma^{h}_{\alpha}\omega_{\alpha},\omega_{\alpha})_{\text{in}}\pi^{=1}(U)_{\text{with respect to induced coordinates}}$ $(x^{h}, y^{h})_{\text{.If a tensor field } F \text{ of type (1,1)has components }} F^{h}_{\alpha} \in U_{\text{, then its vertical lift }} F^{V}_{\alpha} \text{ and its}$ horizontal lift F^{H} have respectively components of the form

(1.13)
$$F^{V}:\begin{bmatrix} 0 & 0\\ F^{h}_{\alpha} & 0 \end{bmatrix}_{\text{and}} F^{H}:\begin{bmatrix} F^{H} & 0\\ -\Gamma^{h}_{\beta}F^{\beta}_{\alpha} + \Gamma^{\beta}_{\alpha}F^{h}_{\beta} & \Gamma^{h}_{\alpha} \end{bmatrix}$$

in $\pi^{=1}(U)$ with respect to the induced coordinates (x^h, y^h) . Thus the horizontal lift of the identity tensor field of V is the identity tensor field in T(V). On taking account of the definition of lift or their local representation (1.10),(1.11),(.2) and(1.13), we get formulae

(1.14)
$$(\theta \psi)^{V} = \theta^{V} \psi^{V}, (\theta \psi)^{H} = \theta^{H} \psi^{H} (\psi X)^{V} = \psi^{V} X^{V}; (\psi X)^{H} = \psi^{H} X$$
$$(\psi \omega)^{V} = \psi^{V} \omega^{V}; (\psi \omega)^{H} = \psi^{H} \omega^{H}; (\psi \otimes \omega)^{H} = \psi^{H} \otimes \omega^{H}$$

For any function Ψ , θ any vector field X form ω given in V

(1.15)
$$X^{V}\psi^{V} = 0; X^{H}\psi^{H} = (X\psi)^{V}$$
$$X^{H}\psi^{V} = (X\psi)^{C} - \gamma((d\psi)(X)$$
$$X^{H}\psi^{H} = 0$$

Published by: Longman Publishers

www.jst.org.in

and

Journal of Science and Technology ISSN: 2456-5660 Volume 2, Issue 01 (Jan -Feb 2017) <u>www.jst.org.in</u> DOI: https://doi.org/10.46243/jst.2017.v2.i01.pp66-75

Fr any function Ψ and any vector field X given in V;

(1.16)
$$\omega^{V}(X^{V}) = 0; \psi^{V}(X^{H}) = (\omega(X))^{V}$$
$$\omega^{H}(X^{V}) = (\omega(X))^{V}; \omega^{H}(X^{H}) = 0$$

For any vector field X and any 1-form ω given in V,

(1.17)

$$\begin{bmatrix} X^{V}, Y^{H} \end{bmatrix} = \begin{bmatrix} X, Y \end{bmatrix}^{V} - (\nabla_{X}Y)^{V} = -(\hat{\nabla}_{Y}X)^{V}$$

$$\begin{bmatrix} X^{C}, Y^{H} \end{bmatrix} - \gamma(t_{X}Y)$$

$$\begin{bmatrix} X^{H}, Y^{H} \end{bmatrix} = \begin{bmatrix} X, Y \end{bmatrix}^{H} - \hat{R}(X, Y)$$

For any vector field X and Y given in V, where ∇ denotes the affine connections in V defined by

$$\stackrel{\wedge}{\nabla} Y = \nabla_{\gamma} X + \left[X, Y \right]$$

For any two vector field X and Y given in V

(1.18)
$$F^{V}X^{V} = 0; F^{H}X^{V} = (FX)^{V}$$
$$F^{V}(X^{H}) = (FX)^{H}, F^{H}X^{H} = (FX)^{H}$$

For any vector field X and any tensor field F of type (1,1) given in V. Le there be given any two tensor field F and K of type (1,1) in V, then we get

(1.19)
$$F^{H}(\mathbf{K}^{H}) = (\mathbf{F}\mathbf{K})^{H}$$

Thus, if there are given a tensor field F of type (1, 1) and a polynomial $\phi(t)$; of a variable t, then we have from (1.19)

(1.20)
$$\phi(F))^H = \phi(F)^H$$

For example

(1.21)
$$(F^2 + I)^H = (F^H)^2 + I$$

$$(\mathbf{F}^2 + F)^H = (F^H)^3 + F^H$$

Published by: Longman Publishers

<u>www.jst.org.in</u>

Journal of Science and Technology ISSN: 2456-5660 Volume 2, Issue 01 (Jan -Feb 2017) <u>www.jst.org.in</u> DOI: https://doi.org/10.46243/jst.2017.v2.i01.pp66- 75

Where I denotes the identity tensor field of type (1, 1) in the corresponding manifold V of T (V). Let there be a given a tensor field of type (1, 1) in V, then Nijenhuis tensor N is defined by

(1.22)
$$N(X,Y) = [FX,FY] + F^{2}[X,Y] - F[FX,Y] - Fx,FY]$$

X and Y being arbitrary vector field in V.

On taking horizontal lift of both sides and taking account of 1.9), (1.170 and (1.18), we have

(1.23)
$$N^{H}(X^{H}, Y^{H}) = [F^{H}X^{H}, F^{H}Y^{H}] + (F^{H})^{2}[X^{H}, Y^{H}] - F^{H}[F^{H}X^{H}, Y^{H}]$$

The right hand side of (1,23) is nothing but the Nijenhuis tensor $N(X^H, Y^H)$ of the horizontal lift F^H of F, thus we have

$$(1.24) NH = N$$

Where N denotes the Nijenhuis tensor of F^{H} .

Let F be the tensor field of type (1,1) in V, then the vertical lift F^V is of the rank r and its horizontal lift F^H is of rank 2^r iff F is of rank r.

Let there be a given projection tensor $m \in V$ such that $m^2 = m$, then there exist a distribution D in V , which is determined by m. On taking account (1.21) we get,

$$(m^{H})^{2} = m^{H}$$

which means \mathbf{m}^{H} is also projection tensor in T(V), thus there exist in T(V)a distribution D^{H} corresponding to \mathbf{m}^{H} and which we call the horizontal lift of distribution D. The horizontal lift D^{H}

by all vector field of type X^{V} and X^{H} , X being an arbitrary vector field belonging to the distribution D because we have

(1.25)
$$\mathbf{m}^{H} X^{V} = (\mathbf{m} X)^{V}, \mathbf{m}^{H} X^{H} = (\mathbf{m} X)^{H}$$

The distribution D is integrated iff

$$(1.26) I(mX,mY) = 0$$

For any vector field X and Y in V, where I = I - m, taking the horizontal lift of the both sides in(1.26), we obtain

Published by: Longman Publishers

 ISSN: 2456-5660 Volume 2, Issue 01 (Jan -Feb 2017)

 www.jst.org.in
 DOI: https://doi.org/10.46243/jst.2017.v2.i01.pp66-75

$$I^H(m^HX^H,m^HY^H)=0$$

Theorem 1.1: Let there be a given distribution D with projection tenor in V, the horizontal lift m^{H} is integrable in T(V) if and only if D is integrable in V.

Proof: Let there be a given a differentiable transformation

$$\rho: V \to V$$

and denoted simply $\rho: T(V) \to T(V)$.

The differential of transformation $\rho: V \to V$ for a 1-form of $\omega \in V$, we define 1-form $\rho \omega$

$$(\rho\omega)X = \omega(\rho(X))$$

X being an arbitrary vector field in V, if the differential of the transformation $\rho: T(V) \to T(V)$ is denoted by $\rho^{H}: T(T(V)) \to T(V)$

Then we have the following formulae

$$(\rho X)^{V} = \rho^{C} X^{V}, (\rho X)^{H} = \rho^{H} X^{H}$$
$$(\rho \omega)^{V} = \rho^{C} \omega^{V}; (\rho \omega)^{H} = \rho^{H} \omega^{H}$$

For any vector field X and 1-form ω given in V for a tensor field F of type (1, 1) given in V, we define a tensor field ρF by

$$(\rho F)^{X} = (F(\rho X))$$

then we get

$$(\rho F)^{V} = \rho^{C} F^{V}, (\rho F)^{H} = \rho^{H} F^{H}$$

The tensor field ρF is that induced from the given F by the transformation $\rho: V \to V$.

2. Almost Complex Structure:

Let there be a given field F of type (1, 1) in V. On taking account of (1.21) we have

$$(F^{\scriptscriptstyle H})^2 + I = 0$$

if and only of

 $(F^2) = -\mathbf{I}$, thus we have

Published by: Longman Publishers

Theorem2: The horizontal lift F^{H} of a tensor field of type F of type (1, 1) given in differentiable manifold V is an almost complex structure in T (V) if and only if so F in V.

Proof: A tensor field of type (1, 1) is called f—structure of rank r, when F satisfies $F^3 + F = 0$ or $F^3 = -F$ and the rank of is a constant r everywhere, r being necessarily even. On taking account of (1.24), we have the theorem,

Theorem 2.2: An almost complex structure F in an almost complex space V, a transformation $\rho: V \to V$ preserves the structure F if and only if its differential function $\rho: T(V) \to T(V)$ preserves F^{H}

3. F-Structure:

Let there be given n dimensional differentiable manifold V of class C^{∞} on V and a tensor of type F of type (1,1) of rank r $(1 \le r \le n)$ such that

(3.1) $F^3 + F = 0$, then F is called F-structure. If we put

(3.2)
$$I = -F^2, m^2 = F^2 + I$$
, then we have

$$+m = I, I^2 = -IoF = F^4 = F^2 = I$$

(3.3)
$$m^2 = moF^2 + m = m; \text{Im} = mI = 0$$

$$FI = IF, Fm - mF = 0$$

These equations shows that there exist two complementary distribution P_1 and Q_m ; in V corresponding to the projection tensor I and m respectively, when the rank r of F in V, P_1 is r-dimensional and Q_m ; is (n-r) dimensional, where dim.m = n.

We have the following integrability conditions:

(a) A necessary and sufficient condition for the distribution Q_{m} ; to be integrible is

(3.4)
$$N(mX, mY) = 0$$

Ι

For any $X, Y \in \mathfrak{I}_1^0$, where N denotes the Nijenhuis tensor of the F-structure.

(b)A necessary and sufficient condition for the distribution P_1 to be integrable is *Published by: Longman Publishers* <u>www.jst.org.in</u> Journal of Science and Technology ISSN: 2456-5660 Volume 2, Issue 01 (Jan -Feb 2017) <u>www.jst.org.in</u> DOI: https://doi.org/10.46243/jst.2017.v2.i01.pp66- 75

 $(3.5) \qquad N(X, \mathbf{Y}) = 0$

For any vector field $X, Y \in V$

If the distribution P_1 is integrable, then we have the relation $F^2 = I$, the F operators on V and almost structure F on each integral manifold of D such as FX' = IX', X' being an arbitrary vector field tangent to the integral manifold of P_1 , thus rank r of F must be even. When the distribution P_1 is integrable and induced almost complex F is complex analytic on each integral manifold of P_1 . Hence we say that F-structure is partially integrable.

(a) A necessary and sufficient condition for the distribution for F-structure to be partially integrable that

(3.6)
$$N(IX, IY) = 0 \text{ for any } X, Y \in \mathfrak{I}_1^0.$$

Let us suppose that there exists, in each coordinates neighbourhoods of V, local coordinates with respect to which F-structure has numerical components

$$F : \begin{bmatrix} 0 & -\mathrm{Im} & 0 \\ \mathrm{Im} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

where Im denotes the unit $m \times m$ matrix and r = 2m is the rank of F. If this is the case, we call F-structure F is integrable.

(b)A necessary and sufficient condition for F-structure to be integrable is that

$$(3.7) N(X,Y) = 0$$

For any vector field X and Y in V.

Let F be a tensor field of type (1,1) in V, then we have, on taking account of (1.21), that the equation $F^3 + F = 0$ is equal to $(F^H)^3 + F^H = 0$, where the rank of F^H is 2r and r is the rank of F, thus we have

Theorem 3.1: Let there be given a differentiable manifold, the horizontal lift F^H of an element F of T(V) is an F-structure iff so in F in V, When F is of the rank r in V and F^H is of rank 2r in T(V).

Proof: Let there be an F-structure of rank r in V, then the horizontal lift I^H and m^H are two complementary projection in T(V), thus there exists in T(V) two complementary distribution P_1^H and Q_m^H

Published by: Longman Publishers

Journal of Science and Technology ISSN: 2456-5660 Volume 2, Issue 01 (Jan -Feb 2017) www.jst.org.in DOI: https://doi.org/10.46243/jst.2017.v2.i01.pp66-75 determined by I^{H} and m^{H} respectively. The distribution P_{1}^{H} and Q_{m}^{H} are respectively lifts of P_{1}^{H} and Q_{m}^{H} of P_{1} and Q_{m} denoted by N and \tilde{N} the Nijenhuis tensor of F and F^{H} respectively, then by means of (1.9),(1.18) and (1.24), the conditions (a),(b),(c) and (d)are equivalent to the following conditions: (a)' $N^{H}(m^{H}X^{H}, m^{H}Y^{H}) = 0$

- (b)' $m^H N^H (X^H, Y^H) = 0$
- (c)' $N^H (\mathbf{I}^H \mathbf{X}^H, \mathbf{I}^H Y^H) = 0$
- (d)' $N^{H}(X^{H}, Y^{H}) = 0$

for any vector field X and Y in V, therefore we have,

Theorem 3.2: The Horizontal lift F^H of an F-structure F in V satisfies one of the integrability conditions (a)', (b)', (c)', (a)' in T(V) iff the given F-structure F satisfies the corresponding integrability condition in V.

4. Almost Para contact structure and F-structure: Let there be given n-dimensional differentiable manifold V, a tensor field of type (1,1), a vector field ξ and a co-vector field η satisfying

$$F^{2} = I - \xi \otimes \eta; \ F\xi = 0 \ \eta(FX) = 0 \ \eta(\xi) = 1$$

For any vector field X in v, then η is necessarily odd and we call a structure defined by the set (F, ξ, η) of such tensor field F, ξ and η an almost para-contact structure, on taking account of (4.1), we have $V=F^3+F=0$ and that F of rank (n-1) everywhere in V. If there is given an almost para-contact structure (F, ξ, η) in V o type (1, 2) is

(4.2)
$$S(X,Y) = N(X,Y) + (X(\eta(T)) - Y(\eta(X)) - \eta[X,Y]\xi$$

For any X and Y in V, where N denotes the Nijenhuis tensor of J. The almost para-cotact structure (F,ξ,η) is normal if S = 0. The set is a framed F-structure F in V. If there is given an F-structure F of rank (n-1) in an n-dimensional differentiable manifold V, then there exists an almost Para-contact structure (F,ξ,η) in V. when the framed F-structure (F,ξ) is normal, the given almost Para-contact structure (F,ξ,η) is said to be normal. On taking account of (1.14),(1.16),(1.18) and (1.9), we have from (4.1)

(4.3)
$$(F^H)^2 = I - (\xi \otimes \eta^H + \xi^H \otimes \eta^V) = I - \xi^V \otimes \eta^H - \xi^H \otimes \eta^V$$

Published by: Longman Publishers

ISSN: 2456-5660 Volume 2, Issue 01 (Jan -Feb 2017) www.jst.org.in DOI: https://doi.org/10.46243/jst.2017.v2.i01.pp66-75

$$F^{V}\xi^{V} = 0; F^{H}\xi^{H} = 0; \eta^{V}(F^{H}\tilde{X}) = 0$$

$$\eta^{H}(F^{H}\tilde{X}) = 0; \eta^{V}(\xi^{H}) = 1; \eta^{H}(\xi^{V}) = 1; \eta^{H}(\xi^{H}) = 0$$

For any vector field X in T(V). Now, if we define tensor field of type (1,1) in T(V) by

(4.4)
$$\tilde{J} = F^{H} + \xi^{V} \otimes \eta^{V} - \xi^{H} \otimes \eta^{H}$$

Then we obtain $\tilde{J}^2 = -I$ as a direct consequence of (4, 3), therefore the tensor field \tilde{J} denoted by (4.) is an almost complex structure in T(V). The almost complex structure \tilde{J} is expressed locally by

$$\tilde{J} = \begin{bmatrix} -\Gamma^h & -\delta^h_\alpha \\ \delta^h_\alpha + \Gamma^\gamma_i \Gamma^h_\gamma & \Gamma^h_\alpha \end{bmatrix}$$

With respect to induced coordinates (x^h, y^h) , we have

Theorem4.1: The almost complex structure defined by (4.1) is complex analytic if the almost paracontact structure (F, ξ, η) is normal in V.

References

[1] Yano, K. and S. Kobayashi: Prolongation of tensor fields and connections to tangent bundles, I general theory J. of mathematical .Japan 1 (1996) 19-210

[2] Yano, K. and S. Kobayashi: Prolongation of tensor fields and connections to tangent bundles, II affine automorphism J. of mathematical. Japan 18 (1996) 236-246 .[3] Ishihara S. and K.Yano, on integrability of structure f satisfying $f^3 + f = 0$, Quart. J. Math Oxford (2) 15-(1964)217-222.

[4] Sato I., Almost analytic vector field in almost complex manifold, Tohoku Math.J.17 (1965), 185-199.

[5] Sato I., on a structure defined by tensor field F of type (1,1) satisfying $f^3 + f = 0$, Tensor, N.S. 14(1963) 99-109