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Abstract: The continuous Skip-gram model, which was recently presented, is a quick and easy way to build high-

quality distributed vector representations that capture a huge number of accurate syntactic and semantic word 

associations. We provide numerous enhancements in this study that improve the quality of the vectors as well as the 

training speed. We get a considerable speedup and learn more regular word representations by subsampling the 

frequent words. We also discuss negative sampling, which is a simple alternative to hierarchical softmax. The 

indifference to word order and inability to capture idiomatic phrases are two fundamental limitations of word 

representations. The meanings of "Canada" and "Air," for example, cannot simply be merged to become "Air 

Canada." 

INTRODUCTION 

Using distributed representations of words, sentences, paragraphs, and documents (such as doc2vec) has been 

critical in unlocking the potential of neural networks for natural language processing (NLP) tasks  An object's low-

dimensional vector representation, known as an embedding, may be learned using techniques for learning distributed 

representation. Because the meaning' of an element is spread out over several vector components in these vectors, 

things with semantically comparable meanings are translated to nearby vectors. 

 

 

 

 

Fig. 1. A code snippet and its predicted labels as computed by our model. 

Purpose: The goal of this study is to learn code embeddings, continuous vectors for expressing snippets of code. By 

learning code embeddings, our long-term objective is to allow the application of neural approaches to a broad 

variety of programming-language problems. In this study, we employ the motivating aim of semantic labelling of 

code fragments. Motivating task: semantic labelling of code fragments. Consider the procedure in Figure 1. The 

procedure comprises just low-level assignments to arrays, yet a person reading the code may (correctly) describe it 

as doing the opposite action. Our objective is to forecast such labels automatically. The right-hand side of Figure 1 

displays the labels predicted automatically using our technique. The most probable guess (77.34 percent ) is 

reverseArray. Section 6 includes other instances. This challenge is complex since it needs learning a relationship 

between the complete content of a technique and a semantic label. That is, it involves aggregating maybe hundreds 
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of phrases and assertions from the method body into a single, descriptive name. Our approach. We provide an 

unique approach for predicting programme attributes using neural networks. Our fundamental contribution is a 

neural network that learns code embeddings Ð continuous distributed vector representations for code. The code 

embeddings provide us a natural and efficient way to represent relationships between code snippets and labels. 

Because of the organised nature of source code, our neural network design can learn to combine several syntactic 

pathways into a single vector. As in NLP, word embeddings are important to the use of deep learning for NLP tasks, 

and this capacity is crucial to the application of deep learning in programming languages. It is necessary to provide 

the model with an appropriate tag, caption or name for the code snippet. Using this label, we specify the semantic 

attribute we want the network to represent, for example, a tag applied to the snippet, or the name of the method, 

class or project from whence the sample was extracted. The code fragment is C, and the label or tag is L. It is our 

primary assumption that the distribution of labels may be derived from C's syntactic routes. That is why the label 

distribution P (L|C) is part of our model's learning process. For the goal of guessing the name of a technique based 

on its body, we show the usefulness of our methodology. This is an essential issue since clear method names make it 

simpler to write and maintain software. Choosing a method's name carefully allows you to communicate the 

method's primary goal in a concise and memorable way. Ideally, "you don't need to look at the body if you have a 

suitable method name." A few years later [Fowler and Beck 1999]. Choosing the right names for public API 

methods is extremely important, since bad method names may condemn a project to obscurity. It has been reported 

[Allamanis et al, 2015a; Hùst, 2009]; [Allamanis et al, 2015b; Hùst, 2009]. Semantic equivalence between names is 

captured. Learning code vectors requires the acquisition of a vocabulary of vectors for the labels. To forecast 

method names using our approach, method-name vectors reveal unexpectedly close semantic and parallels. 

vector(equals)+vector(toLowCase) produces a vector that is very similar to vector(equals) (equalsIgnoreCase). 

Table 1. Semantic similarities between method names. 

 

 

A well-known NLP analogy is that the model learns analogies that are relevant to source code, such as: receive is to 

transmit as download is to upload [Mikolov and colleagues 2013c]. There are more instances in Table 1, and a more 

in-depth explanation may be found in Section 6.4. 

Applications 

It's possible to use machine learning methods by embedding code snippets as vectors, since machine learning 

techniques often use vectors as inputs. The following direct applications are examined in this paper:Automatic code 

review suggests better method names when the name supplied by the developer does not correspond to method 

functionality. To avoid naming issues, increase readability and maintenance of code, and promote the usage of 

public APIs, better method names are needed. Allamanis et al. 2015a; Fowler and Beck 1999; Hùst and stvold 2009] 

have already demonstrated that this application is of major value. Semantic similarities allow search in "the issue 

domain" rather than "the solution domain" for retrieval and API discovery. It is common for developers to search for 

a serialise function when the corresponding method of the class is called toJson since serialisation is done through 

json. Finding toJson is easy with the use of a computer algorithm that scans all of the techniques for the one that is 

most close to the required name (Table 1). Without our method, it's impossible to detect semantic similarities like 

this. Our vectors may also be used by an automated tool to tell if someone is using equals right after toLowerCase 

and propose that they switch to equalsIgnoreCase in its place (Table 6). To help with activities like code retrieval, 

captioning, categorization, and tagging, or as a measure for comparing the similarity of code snippets in order to aid 

in ranking and clone detection, we generate vectors of code. As a result of our method's unique ability to generate a 

unique vector for each and every line in a snippet of code, comparable lines of code may be given similar vectors. 

Machine learning algorithms may be used in a wide range of contexts thanks to this capacity. For our assessment 

benchmark, we chose the tough job of method name prediction, which has previously shown disappointing results 

[Allamanis et al. 2015a, 2016; Alon et al. 2018]. Predicting whether a programme does or does not conduct I/O, 

discovering its dependencies, and determining whether it is suspected of being a malicious software are all activities 
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that are necessary for success in this assignment. We demonstrate that our method significantly outperforms the 

findings of prior studies on this difficult benchmark. 

Challenges: Representation and Attention 

Giving a name to a method (or assigning a semantic label to it) is an example of an issue that calls for a concise way 

to describe the meaning of the code in question. When it comes to code snippets, the challenge is how to encode 

them in such a manner that they may be reused across different applications and used to anticipate attributes such as 

their labels. Two issues arise as a result of this: Incorporating an example from one software into another in order to 

make it easier to understand. It's important to discover which components of the representation are significant to 

predicting the desired feature, and the order in which they are important. Representation. Text is often treated as a 

linear series of tokens by NLP techniques. There are a number of current techniques that treat source code as a token 

stream [Allamanis et al. 2014, 2016; Allamanis and Sutton 2013; Hindle et al. 2012; Movshovitz-Attias and Cohen 

2013; White et al. 2015]. In contrast to this, programming languages may considerably benefit from representations 

that use the organised character of their grammar [Alon et al. 2018; Bielik et al. 2016; Raychev et al. 2015]. A trade-

off exists between the amount of analysis necessary to extract the representation and the amount of learning effort 

required to use it. ' In many cases, learning about a programme just reading the program's surface language requires 

a substantial amount of time and effort. So much data is needed for this learning endeavour because the learning 

model must re-learn programming syntax and semantics from the input. However, if the representation is extracted 

by a thorough study of the programme code, the learnt model may become language-specific (and even task-

specific). For our representation, we follow prior research [Alon et al. 2018; Raychev et al. 2015] by using paths in 

the program's abstract syntax tree (AST). The regularities that reflect frequent coding patterns may be captured by 

describing a sample of code using its syntactic pathways. For vast volumes of code and a broad variety of issues, we 

show that this approach greatly reduces the learning effort (relative to learning from programme text). A code 

snippet is represented by a collection of its extracted pathways, which we call a bag. The difficulties Attention. To 

put it another way, the issue is that you need to figure out how to connect a bag to a computer.with a label and a set 

of path contexts. Even comparable procedures will not have the exact same bag of path-contexts if they represent 

each one monolithically. As a result, we require a compositional technique that can aggregate a bag of route contexts 

such that bags that generate the same label are mapped to nearby vectors. Compositional mechanisms of this kind 

might generalise and describe previously unknown bags by exploiting previously learned path-contexts and their 

constituent components (paths, values, etc.). A new neural attention network design is used to tackle this problem. 

Attention models have lately attracted a lot of attention, particularly in the fields of neural machine translation 

(NMT), reading comprehension, voice recognition, and computer vision. Neural mechanisms learn how much 

attention to pay to each item in a bag of path-contexts (the attention"). Each each path-context is aggregated into a 

single vector that contains all the information about the whole code snippet. This may be shown in Section 6.4, 

where we explain how the weights assigned by our attention mechanism can be represented to comprehend the 

relative relevance of each path-context in a prediction. Both the atomic representations of pathways and the capacity 

to assemble many contexts into a single code vector are optimised concurrently while learning both the attention 

mechanism and the embeddings. Disciplined and unguided focus By Xu et al. [2015], soft and hard attention were 

used to describe the work of creating picture captions. While hard attention refers to selecting one path-context to 

concentrate on, soft attention indicates that all path-contexts are weighted equally in our context. The enhanced 

outcomes may be attributed to the usage of soft focus on syntactic routes. It is shown that our approach is more 

efficient for modelling code when compared to an analogous model based on hard focus. 

 

Existing Techniques 

Recent years have seen a lot of attention and development in the challenge of predicting programme attributes by 

learning from huge code [Allamanis et al. 2014; Allamanis and Sutton 2013; Bielik et al. 2016; Hindle et al. 2012; 

Raychev et al. 2016a]. For a variety of applications, it is essential to be able to predict semantic properties of a 

programme without running it and with minimal or no semantic analysis: predicting names for programme entities 

[Allamanis et al. 2015a; Alon et al. 2018; Raychev et al. 2015], code completion [Mishne et al. 2012; Raychev et al. 

2014], code summarization [Allamanis et al. 2016], code generation [Amod (see [Allamanis et al. 2017; Vechev and 

Yahav 2016] for a survey). 
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Contributions 

It uses a path-based attention model for vector learning in arbitrary-sized chunks of code. Using this technique, we 

may feed a programme, which is a discrete object, into a deep learning pipeline for a variety of tasks. 

As a benchmark for our methodology, we conduct a quantitative assessment for predicting the names of cross-

project methods, trained on more than 12 million methods of real-world data, and compared to earlier research. • 

This new technique outperforms prior efforts that employed LSTMs, CNNs, and CRF-based networks.For example, 

a qualitative assessment based on how much attention the model has learnt to pay to the diverse path circumstances 

while generating predictionsMethod name embeddings, which commonly assign similar names to comparable 

vectors, and even make it easy to calculate analogies using basic vector arithmetic, are included.A comparison of 

our model to prior non-neural efforts, such as Alon et al. [2018] and Raychev et al. [2015], to highlight the major 

benefits in terms of generalisation and spatial complexity of our model. 

OVERVIEW  

It's in this part that we show how our model is able to identify tiny changes between comparable pieces of code. A 

prediction may be made about each snippet even if it has not been seen in its whole in the training data because of 

the vectors. In order to generate a single code snippet, we employ an attention method to learn the weighted average 

of the route vectors and extract syntactic pathways from the snippet. These path vectors are then represented as a 

bag of distributed vector representations. As a final benefit, this code vector may be used to make educated guesses 

about the snippet's name. 

 

Figure 2 shows three strategies that, despite their similar syntactic form, may be clearly identified by our model: Our approach accurately 

predicts meaningful names by capturing the minor distinctions between them. Each technique depicts the model's top four most important 

routes. Colored pathways' widths are proportionate to the amount of attention they received. 

Motivating Example  

We show how to learn code vectors for method bodies and predict the method name given the body using our 

technique since method names are often descriptive and accurate labels for code snippets. The same method may be 

used to apply to any code fragment that contains a label. The three Java methods shown in Figure 2 are good 

examples. In terms of syntax, these methods all contain a single argument named target, (ii) iterate through a field 

called elements, and (iii) have an if condition within the loop body. They all follow a similar pattern: As can be seen 

in Figures 2a and 2b, the former returns true if elements include target and the latter returns false if it does not; 

Figure 2b returns the element from elements whose hashCode matches target, while Figure 2c provides the index of 

target inside elements. Despite their overlapping qualities, our model is able to accurately predict the descriptive 

method names: contains, get, and indexOf, all of which have a distinct meaning. Extraction of a route. An AST is 

constructed for each query method in the training corpus. Syntactic analysis is then carried out by traversing the 

ASTPaths between the AST leaves are extracted. Paths are shown as a series of AST nodes connected by arrows 

pointing up or down in the tree, respectively. We refer to this tuple as a path-context since it contains the values of 

the AST leaves to which it is connected. Section 3 clearly defines these concepts. Using the AST of the technique in 

Figure 2a, Figure 3 shows the top four path contexts that were given the greatest attention by the model during this 

prediction, with the width of each route corresponding to the attention it received from the AST. Contexts are 

represented in a distributed manner. It is mapped to the real-valued vector representation, or embedding, of each of 

the route and leaf values of a path-context. For each path-context, a single vector is concatenated from the three 

contexts. It is possible to learn the embedding values as well as other network parameters during training. A network 

of paths and attention. An entire method's path-context embeddings are combined into one vector by the Path-
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Attention network. It's the attention mechanism that learns to score each path-context, such that the more the 

attention, the better the score.  

 

Figure 3 shows the model's top-four attended pathways from Figure 2a on the AST of the same sample. In each hue, the amount of attention 

it receives is reflected in the path's width (red 1: 0.23, blue 2: 0.14, green 3: 0.09, orange 4: 0.07). 

The attention ratings are used to combine these many embeddings into a single code vector. The network then 

estimates the likelihood of each target method name given the code vector. Section 4 explains the network's 

structure. Interpretation of the path of travel. The attention scores that each path-context received from the network 

may be seen, notwithstanding the difficulty of interpreting particular values of vector components in neural 

networks. Figures 2 and 3 show snippets of code that indicate the top four route contexts in each case, as determined 

by the model. Depending on how much attention these path-contexts get, the pathways' widths vary. As a result of 

training on millions of samples, the model has learnt how much weight to assign each feasible route. For example, in 

Figure 3, the red 1 path-context, which runs from the field items to the return value true, was given the most 

attention. In contrast, less attention was paid to the blue 2 path-context, which extends from the argument target to 

the return value false. Think about the red 1 path-context shown in Figure 2a and Figure 3a. It's explained in Section 

3 as: (elements, Name'FieldAccess'Foreach'Block'IfSmt'Block'Return'BooleanExpress'true') It is clear that this 

single route contains the method's core functionality, since it iterates over a field named elements and verifies an if 

condition for each value; if the condition is true, the method returns true. It is easy to see why this route was given 

the most attention by the model since we employ "soft attention," which takes into consideration other pathways 

such as those that explain the "if condition" itself." In addition, the model's top-five recommendations for each 

approach are shown in Figure 2. It is clear from the samples that the top proposals are highly similar to each other, 

and all of them are descriptive of the process. For example, a method named matches is likely to include an if 

condition within a for loop and to return true if a condition is true, as shown in Figure 2a's top-5 choices (contains 

and containsExact are two of the most correct ones). Figure 2a's orange 4 path-context, which runs from Object to 

target, received less attention than other path-contexts in the same procedure but more attention than the orange 4 

path-context in Figure 2c. Although attention is not constant, it is provided to the various path-contexts in the code. 

Comparative study of n-gram structures. Figure 2a displays the four path-contexts that received the greatest attention 

during the prediction of the method name. The orange 4 path-context, for example, connects the tokens "object" and 

"target" in a chain. This may give the idea that a bag-of-bigrams representation of this approach may be as 

expressive as a syntactic route representation. While the AST node of type Parameter differentiates it from, for 

example, a local variable declaration of the same name and type, the orange 4 path does not. An object model uses 

the same representation regardless of whether an object is sent as a method argument or stored locally. Using a 

syntactic representation of a code sample, the model can discriminate between two snippets of code that other 

models cannot. The model may take advantage of small changes across snippets to provide a more precise prediction 

by combining all contexts with attention. The essentials. Highlights of our methodology may be seen in the 

examples provided. • A collection of path-contexts may be used to represent a code snippet. • Making an accurate 

forecast requires more than just one context. To create a forecast, an attention-based neural network takes into 

account different route contexts. While code samples with identical syntactic structure contain many of the same n-

grams, our model can quickly discern subtle variations across code snippets. This model may be used to forecast 

method names across large datasets and projects. In spite of its neural network foundation, our model is human-

interpretable and generates intriguing insights. 

CONCLUSION  
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New attention-based neural networks for encoding arbitrary-sized code chunks using fixed-length continuous 

vectors were described. Using a soft-attention method, the snippet's Abstract Syntax Tree (AST) vector 

representations are aggregated to form a single vector representation. Predicting method names using a model 

trained on over 12 million methods was one way we showed off our technique. With our model, we are able to 

forecast file names across many projects, which is a huge improvement over prior methods. We hypothesise that our 

model's simplicity and dispersed nature allow it to be generalised. The prediction findings are understandable and 

engaging because of the attention mechanism. As a foundation for a broad variety of programming language 

processing activities, we think the attention-based approach that leverages a structural representation of code may be 

used. All of our code and our trained model may be found on https://github.com/tech-srl/code2vec for this reason. 
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