
Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 394

T

A Survey of Controlled Experiments in Software Engineering
Dr.M.V Siva Prasad, Dr.M. Murugesan, K.Sarvani

Professor1,2, Assistant Professor3,

Dept. of CSE,
mail-id:principal@anurag.ac.in, mail-id:murugeshvim@gmail.com

mail-id:sarvani.anurag@gmail.com

Anurag Engineering College,Anatagiri(V&M),Suryapet(Dt),Telangana-508206

To Cite this Article
Dr.M.V Siva Prasad, Dr.M. Murugesan, K.Sarvani, A Survey of Controlled Experiments in Software

Engineering ” Journal of Science and Technology, Vol. 07, Issue 02,- March-April 2022, pp394-422
Article Info
Received: 21-03-2022 Revised: 19-03-2022 Accepted: 11-03-2022 Published: 28-03-2022

Abstract—The classical method for identifying cause-effect relationships is to conduct controlled experiments. This paper reports
upon the present state of how controlled experiments in software engineering are conducted and the extent to which relevant
information is reported. Among the 5,453 scientific articles published in 12 leading software engineering journals and conferences in the
decade from 1993 to 2002, 103 articles (1.9 percent) reported controlled experiments in which individuals or teams performed one or
more software engineering tasks. This survey quantitatively characterizes the topics of the experiments and their subjects (number of
subjects, students versus professionals, recruitment, and rewards for participation), tasks (type of task, duration, and type and size of
application) and environments (location, development tools). Furthermore, the survey reports on how internal and external validity is
addressed and the extent to which experiments are replicated. The gathered data reflects the relevance of software engineering
experiments to industrial practice and the scientific maturity of software engineering research.

Index Terms—Controlled experiments, survey, research methodology, empirical software engineering.

INTRODUCTION
HERE is an increasing understanding in the software engineering community that empirical studies are needed to
develop or improve processes, methods, and tools for software development and maintenance [6], [4], [35], [16], [43],
[5], [32], [41], [50], [15]. An important
category of empirical study is that of the controlled experiment, the conducting of which is the classical scientific method
for identifying cause-effect relationships. This paper reports on a survey that quantitatively characterizes the controlled
experiments in software engineering published in nine journals and three con- ference proceedings in the decade from
1993 to 2002. The journals are ACM Transactions on Software Engineering Methodology (TOSEM), Empirical Software
Engineering (EMSE), IEEE Computer, IEEE Software, IEEE Transactions on Software Engineering (TSE), Information and
Software Technology (IST), Journal of Systems and Software (JSS), Software Maintenance and Evolution (SME), and Software:
Practice and Experience (SP&E). The conferences are the International Conference on Software Engineering (ICSE), the
IEEE International Symposium on Empirical Software Engineering (ISESE), and the IEEE International Sympo- sium on
Software Metrics (METRICS). The conference Empirical Assessment & Evaluation in Software Engineer- ing (EASE) is
partially included in that 10 selected articles from EASE appear in special issues of JSS, EMSE, and IST. We consider the
above journals to be leaders in software engineering. ICSE is the principal conference in software engineering, and ISESE,
Metrics, and EASE are major venues in empirical software engineering that report a relatively high proportion of controlled
software engineering experiments. Research in empirical software engineering should aim to acquire general knowledge
about which technology (process, method, technique, language, or tool) is useful for whom to conduct which (software
engineering) tasks in which environments. Hence, this survey focuses on the kind of technology being studied in the
experiments investigated (which reflects the topics of the experiments), the subjects that took part, the tasks they performed,
the type of application systems on which these tasks were performed, and the environments in which the experiments were
conducted. This survey also includes data on experiment replication and the extent to which internal and external validity is
discussed. The paper is organized as follows: Section 2 describes related work. Section 3 defines the research method for
the survey. Section 4 reports the extent of controlled experi- ments, and Sections 5-10 report our main findings. Section 11
discusses threats to the validity of this survey. Section 12 summarizes.

RELATED WORK

Table 1 summarizes the purpose, scope, and extent of four major surveys in addition to this survey. Tichy et al.

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 395

[43] compare the amount of experimental work published in a few computer science journals and conference
proceedings with the amount of experimental work

TABLE 1
Surveys of Empirical Studies in Software Engineering

published in a journal on artificial neural network and a journal on optical engineering. In total, 403 articles were
surveyed and classified into five categories: formal theory, design and modeling, empirical work, hypothesis testing, and other.

Zelkowitz and Wallace [49] propose a taxonomy of empirical studies in software engineering and report a survey in which
612 articles were classified within this taxonomy. Glass et al. [20] investigate 369 articles with respect to topic, research

approach, research method, reference discipline, and level of analysis.
The above surveys give a comprehensive picture of

research methods used in software engineering. They differ in purpose, selection criteria, and taxonomies. Nevertheless,
their results suggest the same conclusions: The majority of published articles in computer science and software
engineering provide little or no empirical validation and the proportion of controlled experiments is particularly low. The
surveys propose means to increase the amount of empirical studies and their quality.

The major difference between those surveys and ours is
that they describe the extent and characteristics of various types of empirical study, while we provide an in-depth study of

controlled experiments only. A comparison of those surveys and ours regarding the extent of controlled experiments is

provided in Section 4.
In addition to the general surveys described above, there

are several surveys within subdisciplines of software en- gineering, for example, object-oriented technology [14], testing
techniques [28], and software effort estimation [25]. Furthermore, Shaw [38] categorizes the research reported in articles
submitted and accepted for ICSE 2002 and Zendler

[51] reports a survey of 31 experiments with the aim of developing a preliminary theory about software engineering.

RESEARCH METHOD

This section describes the kind of experiments that are considered in this survey and the procedure for identifying and

analyzing the relevant articles.

 Controlled Experiments in Software Engineering

Shadish et al. [37] provide the following definitions:

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 396

● Experiment: A study in which an intervention is deliberately introduced to observe its effects.
● Randomized experiment: An experiment in which units are assigned to receive the treatment or an alternative

condition by a random process such as the toss of a coin or a table of random numbers.
● Quasi-Experiment: An experiment in which units are not assigned to conditions randomly.
● Correlation study: Usually synonymous with nonex- perimental or observational study; a study that simply

observes the size and direction of a relation- ship among variables.

To identify the effects of the deliberate intervention in an experiment, factors that may influence the outcome, in

addition to the treatment, should also be controlled.1 This is the challenge of internal validity (see Section 10.1). Note that
control is not an all or nothing condition; the degree of control varies on a continuous scale.

Based on the definitions given above, we present an operational definition used for this survey. Since the term

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 397

TABLE 2
Aspects and Their Attributes for Data Extraction

experiment” is inconsistently used in the software en- gineering community (often used synonymously with empirical

study), we use the term “controlled experiment:”

Controlled experiment in software engineering (operational definition): A randomized experiment or a quasi-experiment in which
individuals or teams (the experimental units) conduct one or more software engineering tasks for the sake of comparing different
populations, processes, methods, techniques, languages, or tools (the treatments).

We do not distinguish between randomized experiments and quasi-experiments in this survey because both experi-
mental designs are relevant to empirical software engineer- ing experimentation. Random assignment of experimental
units to treatments may not always be feasible, e.g., for logistic reasons. For example, one of the surveyed experi- ments
used units formed from existing training groups in a company—random assignment would, in this case, have the training
process.

We exclude several types of study that share certain characteristics with controlled experiments because, while these may
be highly relevant for the field, they do not apply the deliberate intervention essential to controlled experi- ments. Thus, we

exclude correlation studies, studies that are solely based on calculations on existing data (e.g., from data mining), and
evaluations of simulated teams based on data for individuals. The last category falls outside our opera- tional definition
because the units are constructed after the run of the experiment.

Studies that use projects or companies as treatment groups, in which data is collected at several levels (treatment defined,
but no experimental unit defined) are also excluded because we consider these to be multiple case studies [47] (even though
the authors might refer to them as experiments). Our survey focuses on articles that provide the main reporting of

experiments. This excludes articles that, at the outset, would not provide sufficient data for our analyses (e.g., summaries of
research programs). Moreover, usability experiments are not included since we regard those as part of another discipline
(human computer interaction).

 Identification of Articles that Report Controlled Experiments

In order to identify and extract controlled experiments, one researcher systematically read the titles and abstracts of 5,453

scientific articles published in the selected journals and conference proceedings for the period 1993-2002. Excluded from the
search were editorials, prefaces, article summaries, interviews, news, reviews, correspondence, discussions, comments,
reader’s letters, and summaries of tutorials, workshops, panels, and poster sessions.

If it was unclear from the title or abstract whether a
controlled experiment was described, the entire article was read by both the same researcher and another person in the
project team. In the end, 103 articles were selected. Note that identifying the relevant articles is not straightforward
because the terminology in this area is confusing. For example, several authors claim that they describe experi- ments

even though no treatment is applied in the study.

 Analysis of the Articles

The survey data is stored in a relational database (MS SQL Server 2000).2 Some data is specific to an article, some is

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 398

specific to an experiment, and some information concerns the combination of article and experiment. Moreover, an
article might describe several experiments and an experi- ment might be described in several articles, typically with a
different focus in each article. Consequently, we defined a data model with the entities article, experiment, and article-
experiment with a set of attributes relevant to our survey. In addition to the survey database, a catalog of all the articles in
searchable pdf-format was generated. (About 3/4 of the articles were provided in searchable pdf-format by the journal
publishers; the remaining 1/4 were OCR-scanned.)3 The articles were analyzed according to the six aspects listed in Table
2. Each aspect encompasses a set of attributes for data extraction.

TABLE 3
Articles that Report Controlled Experiments

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 399

Six researchers analyzed the articles so that each aspect above was covered by at least two persons. After the initial

analysis, the results were compared and possible conflicts resolved by reviewing the articles collectively a third time or
handing over the article to a third person. The main analysis tool was SAS.4

1 EXTENT

Controlled experiments, as defined in Section 3.1, are reported in 103 (1.9 percent) of the 5,453 articles scanned for this

survey, see Table 3. The 103 articles report a total of
113 controlled experiments. Twelve articles report more than one experiment and four experiments are reported in several
articles.

EMSE, ISESE, and METRICS, which focus specifically on empirical software engineering, report a higher proportion of
controlled experiments than the other journals and the ICSE conference. The mean percentage of controlled experiments
across years varies between 0.6 and 3.5, but we see no marked trend over years. An overview of the trend for the
individual journals/conferences is presented in the Appendix.

The surveys summarized in Table 1 also report extent. Tichy et al. have the study type definition with the broadest

scope and report that 14 percent of the articles published in the specific software engineering journals TSE and TOPLAS
(Transactions on Programming Languages and Systems) de- scribe empirical work. In Glass et al., the authors classify 3
percent of the articles as laboratory experiments using human subjects and < 1 percent as field experiments. According to
the survey by Zelkowitz and Wallace, experiments defined as controlled methods are reported in 2.9 percent of the
articles. Our survey finds the lowest percentage of articles (1.9 percent) that report controlled experiments. This might be
because our study type

1. SAS is a registered trademark of SAS Institute Inc.

definition is narrower than those of the other studies or because our investigation spans more sources and years.
We rank institutions and scholars according to the number of experiments published (not the quality), but relative to their

fractional representation on the article(s) that reports the experiment. Glass and Chen [18] also ranked institutions and

scholars but according to publication in systems and software engineering, and they used a more complex ranking scheme for
scholars.

In total, 207 scholars are involved in the experiments of our survey. Table 4 presents the top 20 ranked scholars. Due to
the fractional distribution, the number of experiments in which a scholar has actually been involved is typically higher
than the scores in Table 4. For instance, the top ranked scholar, Giuseppe Visaggio, was involved in six experiments
described in four papers authored by one to three scholars, resulting in a fractional score of 4.2 experi- ments. Among the

20 top ranked scholars, three (Laiten- berger, Roper, Wood) were involved in eight experiments, one was involved in

seven, four in six, two in five, nine in four, and one was involved in three experiments.
There are 109 institutions from 19 countries involved in the experiments of our survey. The scores for institutions are

accumulated from the scores of affiliated authors. Table 5 presents the top 10 ranked institutions.
The institution that has used most professionals as subjects throughout the surveyed time period is Fraunhofer

Institute, Kaiserslautern. In total, they used 100 professionals in six experiments, ranging from 11 to 20 in a single
experiment. The institution that conducted the experiment involving the largest number (68) of professionals as subjects

was Andersen Consulting (now Accenture), Norway.

5 TOPICS

This section describes two classifications of the 103 analyzed articles according to their main topic. The first classification
illustrates the experiments’ discipline coverage relative to

TABLE 4
Top 20 Scholars Conducting Controlled Experiments in Software Engineering 1993-2002

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 400

software engineering as a whole, while the second classification has a more technical focus on software engineering

method and methodology. The analysis is with respect to article, rather than experiment; this is adequate since no two

experiments on different topics are reported in the same article. Both classifications emphasize the treat- ment of an

experiment, since treatment, being the interven- tion of interest (Section 3), indicates the de facto topic under investigation.

 Classification Scheme: Glass et al.

There are a number of classification schemes for computing science and software engineering, e.g., SWEBOK [1] and Glass
et al. [20]. The classification scheme of Glass et al. is aimed at positioning software engineering research relative to a

backdrop of overall computing disciplines, i.e., computer science, software engineering, and information systems, and

their classification categories are meant to give

uniformity across all three fields [19]. The scheme is, therefore, somewhat general. On the other hand, this scheme has
actually been used in classifying work under- taken in software engineering and can therefore be used for illustrating the
relative topic coverage of controlled experi- ments in software engineering. Fig. 1 shows the distribution to topic categories of
controlled experiments in software engineering relative to software engineering research in general. Controlled ex- periments
seem to cover at least the categories that are well represented by general SE research, but remember that the overall number of
controlled experiments performed is low (Section 2). Recall that experiments on topics purely within human computer
interaction are not included in this survey, as is the case for topics purely within information systems. Our focus on
experiments with human subjects also excludes a range of software engineering topics.

TABLE 5

Top 10 Institutions Conducting Controlled Experiments in Software Engineering 1993-2002

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 401

Fig. 1. Comparative distribution to topic of software engineering research and software engineering controlled experiments using the scheme of

Glass et al. Only nonvoid categories are shown.

The two most prominent categories are Software life- cycle/engineering (49 percent) and Methods/Techniques (32
percent) due to, respectively, the relatively large number of experiments on inspection techniques and object-oriented design
techniques.

 Classification Scheme: IEEE Keyword Taxonomy

The IEEE Keyword Taxonomy [24] provides a more technical perspective than the scheme of Glass et al. [20]. This
taxonomy is recommended for authors of IEEE articles, and is an extended version of the ACM Computing Classification [2].

We use the IEEE keywords to denote topic categories. The classification according to the IEEE Keyword Taxon- omy is
given in Table 6. The two prominent technical areas are Code inspections and walkthroughs (35 percent) and Object- oriented
design methods (8 percent). The numbers of experi- ments are limited for other areas.

6 SUBJECTS

This section describes the kind of subjects that take part in the experiments, the kind of information that is reported about
them, and how they are recruited.

 Number and Categories of Subjects in the Experiments

In total, 5,488 subjects took part in the 113 experiments investigated in this survey. Eighty-seven percent were students
and nine percent were professionals. The reported subject types are divided into the categories given in Table 7. The number
of participants per experiment ranges from four to 266, with a mean value of 48.6 (Table 8). Students participated in 91
(81 percent) of the experiments, either alone or together with professionals and/or scientists, and professionals took part
in 27 experiments (24 percent). The use of professionals as subjects has been relatively stable over time. Undergraduates
are used much more often than graduate students. For one experiment, no information about subject type was provided;
for eight experiments, no details about type of students were given; and for five experiments with mixed types of
subject, no informa- tion about the number in each category was provided.

The issue of differences between students and profes- sionals has been discussed in the literature [13], [12], [48], [36].

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 402

Interestingly, while seven articles describe experiments using both students and professionals, only three of them measure the
difference in performance between the two groups. In the first experiment, categorized as Software psychology, three
programming tasks were performed. For two of the tasks, there was no difference between the groups, whereas, for the
third task, the professionals were significantly better. In the second experiment, also in Software psychology, there was no
difference. In the third experiment, categorized as Main- tenance process, the professionals were significantly better.

The performance in an experiment may differ between subcategories of subjects, that is, there may be an interaction effect
between treatment and subcategory [3]. However, none of the surveyed experiments distinguished between subcategories of
professionals or students.

The experiment with the highest number of professionals
(68) was classified as Cost estimation in the IEEE-taxonomy

 TABLE 7
Subject Categories

transfer from the research community to industry. Hence, to break the trend of few professionals as subjects, new strategies
are needed to overcome these challenges, see e.g., discussions in [39], [40].

 Information about Subjects

In order to generalize from an experiment with a given group of subjects (sample population), one needs informa- tion about
various characteristics and their variation both in the sample and in the group to which the results will be generalized (target
population) [7]. For professionals, depending on what we wish to study, it would be relevant to know the variations
regarding competence, productivity, education, experience (including domains), age, culture, etc. However, there is no

generally accepted set of background variables for guiding data collection in a given type of study, simply because the
software engineering community does not know which variables are the important ones. We have chosen to focus on the
variables that are reported in the analyzed articles, that is, gender, age, education, experience, and task-related training.

The analyzed articles vary to a large extent on how they report such information. For 14 of the 113 experiments, no
information about the subjects was reported. Moreover, the

level of detail reported varies substantially. An example of detailed information on programming experience is: “On average,
subjects’ previous programming experience was 7.5 years, using 4.6 different programming languages with a largest program of 3510
LOC. Before the course, 69 percent of the subjects had some previous experience with object-oriented programming, 58 percent
with programming GUIs.” An example of a high-level description without figures is: “Some of the students had industrial
programming experience.” For the 91 experiments with students, the following information was reported: gender (seven
experiments), age (six experiments), grades (six experiments), programming experience (general description: 17 experiments,
number of years/languages: 11 experiments), work experience in industry (general description: nine experiments, number of
years: nine experiments), task-related experience (64 ex- periments), and task-related training (27 experiments). The training
was either tailored specifically for the experiment or was part of a course, or the experiment could be
conducted as part of a training session.
For the 27 experiments with professionals, more details on the subjects’ background were given. Categories of professionals
such as reviewers, analysts, programmers, and managers were given for seven experiments. Subjects’

TABLE 8
Participants in Experiments

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 403

TABLE 9
Subject Reward Data

degrees were described for three experiments. Gender and age were given for, respectively, two and three experiments.
Language and nationality were given for one experiment (subjects from two countries participated). A general description of
programming experience was given for two experiments. Programming experience in years/lan- guages was given for seven
experiments. A self-assessment of programming experience was reported for two experi- ments. Work experience in
years was given for five experiments. A general description of task-related experience was reported in one experiment.
Task-related experience was measured in years for 13 experiments. Task- related training was reported for 12 experiments.

The relatively low and arbitrary reporting on context variables is a hindrance for metastudies, which are needed to
identify which context factors influence which kinds of performance. The impact of the various context factors will, of course,
depend on the treatments and actual tasks to be performed in the experiments. Future work should investigate the extent to
which the variation in performance of subjects can be explained by their background, such as education and work experience,
and to increase our knowledge of the impact of using students versus profes- sionals as subjects in software engineering
experiments.

 Recruitment of Subjects

Recruiting subjects to experiments is not a trivial task; either from a methodological or a practical point of view. For
example, volunteers may bias the results because they are often more motivated, skilled, etc., than subjects who take
part because it is mandatory in some way [8]. Information about whether participation was mandatory is reported for
41 (36 percent) of the experiments. For 12 of them (all student experiments), participation was mandatory. Infor- mation about
subject compensation for taking part in experiments is reported for 39 (35 percent) of the experi- ments. The grades of
students were affected by the participation in 10 cases and they received extra credits in nine cases (Table 9). In three cases,
students were paid to take part and, in one case, students were sponsored for a trip to an exhibition. No compensation to
professionals is reported. Typically, the experiments with professionals were organized as part of normal projects or training
programs and payment was thus implicitly provided by the employer. Hence, it seems that none of the researchers or research
teams paid companies or professionals for taking part in experiments.

If one applies statistical hypothesis testing, a requirement is to have a well-defined population from which the sample is
drawn: “If you cannot define the population from which your subjects/objects are drawn, it is not possible to draw any inference from
the results of your experiment” *30+.5 Nevertheless, only one of the experiments in this survey that apply statistical hypothesis
testing actually reported sampling from a well- defined target population.

For only a couple of experiments, random sampling of
subjects was claimed. How the random sampling was carried out was not described. The dominant approach was

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 404

convenience sampling: “Subjects are selected because of their convenient accessibility to the researcher. These subjects are chosen
simply because they are the easiest to obtain for the study. This technique is easy, fast and usually the least expensive and troublesome.
... The criticism of this technique is that bias is introduced into the sample.” *34+. This does not mean that convenience
sampling is generally inappropriate. For example, Ferber [17] refers to the exploratory, the illustrative, and the clinical
situations in which convenience sampling may be appropriate. In software engineering, the most convenient way of
recruiting subjects is to use the students that are taught by the researcher. (Note that convenience sampling is also common
in other disciplines such as clinical medicine [34] and social sciences [33].)

To increase the potential for sampling subjects from a well-defined population and to alleviate the problem of having
few professionals as subjects (Section 6.1), the experimental software engineering community should apply new
incentives, for example, paying companies directly for the hours spent on an experiment [3] or offer the companies
tailored, internal courses where the course exercises can be used in experiments [27]. Payment would require that
researchers include expenses for this kind of experiment in their applications to funding bodies, see further discussion in
[39].

7 TASKS

The tasks that subjects are asked to carry out are an important characteristic of a software engineering experi- ment.
Tasks may include building a software application from scratch or performing various operations on an existing
application. This section reports on the surveyed experiments according to a high-level categorization of their tasks and the
duration of those tasks. Moreover, we describe the total magnitude of the experiments by reporting the product of the
number of subjects and the duration of the tasks. Finally, we describe the kinds and size of application and materials
used in the experiments.

 Task Categorization

We categorize tasks given to subjects according to the main tasks in a software process. We have defined four general
categories, Plan, Create, Modify, and Analyze that reflect major tasks on software artefacts. Table 10 shows sub- categories
within these major categories that have been identified in the surveyed experiments.

TABLE 10
Task Categorization, Duration, and Materials Size

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 405

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 406

Task categorization is somewhat different from topic categorization. Tasks of a certain category can be used to test
hypotheses within various topics. For example, a maintenance task can be used to test a certain design or an

experiment assigned to the Patterns category in the IEEE taxonomy might have design, coding, or maintenance tasks. Table
10 shows the number of experiments deploying each kind of task. Note that tasks of several categories might be involved

in a single experiment. A task is represented by its fraction of all tasks in an experiment, for example, an experiment
with one Design task and one Coding task gives a contribution of 0.5 to each of the two task categories. (Note also that we do
not distinguish between tasks and subtasks because there is no commonly agreed definition of the unit of task. Hence, in
the relatively few cases in which the experimenters have divided their tasks into subtasks, we have considered them

as one task as long as they fall within the same category.) Due to experiment design, a task may be performed several
times by the same subjects but with different treatments. In such cases, however, the task is only

counted once.
The proportion of planning, creation, modification, and analysis tasks is, respectively, 10 percent, 20 percent,

16 percent, and 54 percent. Inspection tasks occur in 37 (33 percent) of the experiments, and are by far the most prominent.
This is in accordance with the topic classifica- tion of articles reported in Section 5. Thirty-six of these

experiments involve individual inspections, 29 involve team inspections. Twenty-eight experiments involve both individual
and team inspections. Inspection tasks are typically conducted using pen and paper, although some use support tools.

Document comprehension tasks form the basis of various software engineering tasks and typically involve answering
questions about system structure and functionality. Twenty-three experiments involve document comprehen- sion tasks, 12 of
these pertain to code documents, nine are design comprehension, one concerns a requirements docu- ment, and one
concerns process components.

Maintenance tasks pertain to all document types. The surveyed experiments, however, only deal with design and code
maintenance tasks; 19 experiments give code maintenance tasks and three give change tasks on design documents (including
impact analyses). None give both. In 10 of the code maintenance tasks, new functionality was added. One of the code
maintenance tasks is a pen-and- paper maintenance task performed jointly with a compre- hension task.

Coding and Design are tasks in which new artefacts are produced. Modifying existing code or design documents is classified
as maintenance.

Most of the Testing tasks involve the generation of test harnesses and test cases. Testing here also includes debugging
using debugging tools, but excludes inspections.

Fig. 2. Distribution of experiments with subject-level duration data to time intervals.

Three experiments investigate the effects of preplanning estimates on detailed estimates (anchoring). In one of these, the

Estimation task is part of a Project planning exercise. One experiment involves estimation in a larger project, although project

planning as such is not a task in the experiment in question. Two experiments issue estimation tasks in order to compare

various estimation techniques.

Four of the five experiments with Project planning tasks

are all-student experiments in which the subjects were asked to role-play in project planning or to simulate projects. The

fifth one involves both professionals and students assessing how 10 different factors affect the lead- time of software

development projects.
In the experiment involving Requirements analysis, the

subjects were asked to negotiate a software requirements meeting with a customer.

Forty experiments deploy tasks in several categories.

Among these experiments, five involve three tasks, two involve four tasks: one has comprehension, maintenance, and

inspection (individual and team) tasks, and one has design, coding, team inspection, and testing.

 Task Duration

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 407

An important task characteristic is duration. Accurate duration data per subject (typically in dependent variables) is reported

in 41 (36 percent) of the experiments and at slot level in 28 (25 percent) of the experiments. (Time slots are coarse-grained

indications, typically upper bounds, of how much time the subjects took to perform a task. For example, we chose a slot of

two hours from the information that “We gave each subject up to three hours to review each document (i.e., one document in the

morning, and one in the afternoon). Only one subject took more than two hours.”) Duration data that is not considered sufficient

for analysis is contained in phrases like “Six days, no time limit,” “From 1 to 11 days depending on the subjects’ skills,” and “Non-

programming subjects had 30 min. to finish their task. Programming subjects had one week”.
Fig. 2 shows the frequency by time interval of the

41 experiments with detailed subject-level time information. It appears that about 2/3 of those experiments last less than two
hours.

The two leftmost “Subject level” columns of Table 10 show, for each task category respectively, the fraction of and the

number of experiments with subject-level duration data that include tasks of this category. The third “Subject level” column

shows the median duration in hours for these tasks. For example, three experiments have duration data for design tasks. The

fraction of the time spent on design activities in these three experiments, relative to the total time for all experiments (with

subject-level time data), is 2.3. The median time used on design tasks in these experiments is 0.85 hours. The median

duration of all experiments with subject-level data is 1.0 hours and 2.0 hours for the experiments with slot-level data.

Fig. 3 shows the actual task duration for the subject-level occurrences of Table 10. In the interest of saving space, four data

points at, respectively, 25 (Change code), 18.5 (Coding),
18.5 (Design), and 55 hours (Coding) are omitted from the

TABLE 11
Distribution of Experiments to Subject Number, Duration, and Subject-Duration Categories

figure. It appears that there is large variance in duration and that it seems independent of the type of task being
performed.

Little is mentioned in the articles about control over
context variables in experiments with multiple sessions, idle periods, or that span several days or weeks. Although the issue in
principle concerns all experiments, it would be particularly interesting to know how experimenters have ensured control in
experiments that involve long tasks.

The data described above reflects the duration of explicitly measured software engineering-specific tasks as described in
Section 7.1. Often, however, subjects perform additional tasks (training, preparation, postmortem questionnaires, etc.)
whose durations are not captured in dependent variables or are otherwise measured explicitly. If one wants to reflect the
total time spent by subjects (perhaps in the interest of logistics), information at a different level must be gathered.
Although most experiments (close to 80 percent) provide some sort of information about total experiment duration, the
data is, in general, measured and reported arbitrarily and is consequently difficult to summarize here.

The median duration of the tasks of 1.0/2.0 hours is, of course, a very small fraction of the time of a typical industrial
development project. The extent to which short tasks are a threat to external validity is difficult to judge in general. The actual
tasks in the experiments may be representative of typical industrial (sub)tasks. However, the lack of studies that describe
“typical” tasks within certain categories and contexts makes such a judgment difficult. More studies are needed to investigate
the relevance of the tasks being conducted in software engineering experiments.

7.3 Magnitude of Experiments—Combination of Number of Subjects and Duration

Many aspects of the complexity of software engineering only manifest themselves in controlled experiments if the
experiments involve a sufficiently large number of subjects and tasks, for example, differences among subgroups of
subjects [3]. Hence, we can characterize the experiments in terms of the scale of the combination of subjects and tasks

(here, measured in terms of duration of the task). The magnitude of an experiment can be described in terms of the total
number of person-hours or person-days; that is, the number of subjects multiplied with the length of the tasks. In this survey,

the experiment with the largest number of professionals lasts less than one hour. However, in general, there seems to be

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 408

no significant relationship between
duration and the number of subjects. We here categorize the 69 experiments with duration data (41 with subject-level data
and 28 with slot-level data), according to subject numbers and task duration into, respectively, S (small), M (medium), and
L (large), such that each category contains roughly 1/3 of the experiments. In practice, this gives the following categories:

For subject numbers, S: ≤ 23, M: 23-47, and L: > 47. For duration, S: ≤
0.96 hours, M: 0.96-2.9, and L: > 2.9 hours. (The subject
groups cannot be made completely even because there are six experiments with 24 subjects.) The person-hours cate-

gorization is obtained by crossing these two categorizations in configurations (subject category, duration category) as

follows: S (small): (S,S), (S,M), (M,S); M (medium): (S,L),

(M,M), (L,S); L (large): (M,L), (L,L), (L,M). Table 11 shows
that experiments with professionals use a smaller number of subjects than do experiments with students. Both experi-

ments with students and experiments with professionals have a uniform distribution for the three levels of duration.

Regarding magnitude, most student experiments are in the middle category and a fair number are large, while most
experiments with professionals are small and only one experiment is large.

7.4 Application and Materials

Applications may be of various types, such as commercial, open source, the result of a student project, or custom- built for
the purpose of the experiment. Table 12 shows that 75 percent of the surveyed experiments involved applications that were

either constructed for the purpose of the experiment or were parts of student projects. Commercial applications were used

in 16 experiments, of which 10 included inspection tasks (eight of these had team inspections in addition to individual

inspections), two included design tasks, one had coding and main- tenance (change code), one had coding only, one had

TABLE 12
Distribution of Experiments to Application Type

 (design) comprehension and maintenance (change design), and one had estimation. For 12 experiments, the reporting is

unclear in this respect, but 11 of these appear to have used custom-built applications. There are no open-source
applications registered in this survey. The small fraction of commercial or industrial applications used in current

software engineering experiments puts in question the possibility of generalizing the experimental results to an industrial
setting.

The size of the materials presented to subjects gives some indications of the comprehensiveness of the experiments. Size in
the form of pages, lines of code (LOC), or other quantities is reported in 67 (59 percent) of the experiments. The diversity of the
surveyed experiments and how they report information about materials makes it difficult to give a systematic overview of the
size of the experiment materials. Nevertheless, below, we describe in brief the size of materials per task category, cf. the
rightmost column of Table 10.

Three experiments with Project planning tasks report materials size: a one-page case scenario, a scenario in terms of 500
adjusted function points, and a four-page program representation, respectively. The three Estimation experi- ments are based
on a 1,000 person-hour project, a four-page program representation, and on the creation of 10 programs (no sizes on these),
respectively.

Five of the six experiments with size indications for Design tasks are on requirements documents (1-2 pages, six
modules). The sixth experiment gives a one-page task description. Materials size is reported in one instance for a coding
task (specification given in three tables).

Two experiments with Change design tasks have a 30 page design document as material (one experiment is an internal
replication of the other; the materials of the former are improved, but their sizes are more or less the same), and one has a
1,500 LOC system as input. In the experiments with Change code tasks, the applications to be maintained range from 54 to
2,700 LOC. The largest application also involves 100 pages of documentation. Three experiments report the number of classes
(6-10).

Twenty-eight experiments give materials size for Inspec- tion tasks (individual or team). Fourteen give LOC (ranging

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 409

from 135-3,955 LOC). In one instance, the materials size is given as 300 LOC, but the size of the entire system is 65,000
LOC. Page counts (ranging from 16-47 pages) are given in 14 instances (all different from the 14 with LOC). Materials size
for Testing tasks (25-2,000 LOC) is reported in seven experiments (one also reports 10 classes). Re- ported materials sizes
for Document comprehension tasks are varied (five diagrams, seven screens, 16 screenshots, etc.), but five experiments give
LOC (92-2700 LOC) for Code comprehension tasks and five experiments give page counts (2-30 pages) for Design
comprehension tasks.

In addition, some experiments (with tasks in the Create category) report the size of produced task solutions. Five
experiments with Coding give LOC (in the range 86- 2,000 LOC) for produced code, and in one experiment the size for a
Design task is provided implicitly, in that the solution design document written by the experimenters is two pages. Also, the
amount of added code is given for

two maintenance tasks: 50-150 LOC and 35-79 LOC, respectively.

8 ENVIRONMENTS

The strength of controlled experiments lies in that they may be used to isolate causal relationships. However, controlled

experiments in the field of software engineering are often conducted in artificially designed environments that make it
difficult to generalize the results to industrial contexts. In short, “Internal and external validity can be negatively related”
[37]. This section describes the surveyed experi- ments according to their location and tools used.

 Location

There is a trade-off between realism and control regarding the location of an experiment. Running an experiment in the

usual office environment of subjects that are professionals allows a certain amount of realism, yet increases the threat to
internal validity due to breaks, phone calls, and other interruptions. Controlling and monitoring the experiment is easier
in a laboratory set up but, in such a setting, realism suffers.

For the 27 experiments with professionals or with professionals and students, 17 report no explicit informa- tion
about the experimental setting. Only one experiment is reported to have been run in a usual office environment. The pilot
of another experiment was run in an office environment, but the main experiment was run in a classroom setting in
order to increase the internal validity. Three other experiments were run in a classroom setting, two of which were run

as part of a training course. Seven experiments are explicitly reported to have been run in a laboratory environment.
Of the 85 experiments with students or with students and scientists, 56 report no explicit information about the

experimental setting. For, respectively, 13 and seven of those experiments, it was explicitly stated that they were conducted
in a laboratory and classroom. For another group of nine experiments, some sort of university setting was stated, for example,
“academic settings,” “conducted under exam conditions,” and “supervised setting.” However, one may assume that all the

experiments with students were carried out in a laboratory or classroom. Moreover, we believe that the distinction between a

classroom and laboratory setting for students may be blurred and may depend on cultural differences, apart from the fact that
a laboratory usually would include the use of PCs or workstations (2/3 of the experiments that report the use of a
laboratory also report the use of PC or workstation, see the next section).

Approximately half of all the experiments with students
report the name of the actual university/college. For the 27 experiments that include professionals, the name of the
company is reported in 12 cases. For four experiments, the company is not named, but the type of company is specified.
Note that, depending on the actual experiment, certain companies have a policy such that they must remain anonymous in
the reporting of the experiment. In five cases,

TABLE 13
Distribution of Experiments to Specified Tool

the professionals are described as coming from “several” companies or organizations. The exact number of compa- nies is

not given.6

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 410

 Tools

It is a challenge to configure the experimental environment with an infrastructure with supporting tools that resembles an

industrial development environment. Among the sur- veyed experiments, 55 percent report on tools to support the tasks
of the experiments (Table 13). This includes both explicit descriptions, e.g., “Sun-4, GNU C compiler,” and implicit, but clear
indications, e.g., “Developed programs were run against a set of test data.” Table 13 shows that the use of computer tools is
slightly higher than the use of pen and paper. However, it is likely that a larger proportion of those experiments that do not

report on tools are actually pen and paper experiments, because the added effort and adminis- trative overhead of using
computer tools might inspire researchers to report the use of tools more than the use of pen and paper.

The task types that give the largest and smallest contribution to the PC or workstation category are, respec- tively, Coding
and Inspection. Other than that, there is little correlation between task type and tool for the experiments that actually
report on this issue. Moreover, there was no difference between experiments with professionals and experiments with
students regarding the use of tools.

Three of the five experiments with Combination in Table 13 explicitly test the effects of computerized tool use
versus pen and paper.

The relatively meager proportion of experiments that report on the use of tools to support assigned tasks may be due to an
unawareness of, or a lack of interest in, the relevance of this issue. For example, most of the experi- ments in the Unknown
category are inspection experiments, for which it may be normal to use pen and paper. However, for most design, coding,
testing, and maintenance tasks, computer tools would have been used in an industrial setting, although the line is not clear-
cut. For example, designers may sketch preliminary versions by hand, but the final design would be made using a tool.

In general, increasing the realism of software engineering experiments entails an increased use of industrial support- ing
tools. The community should thus recognize the effort and resources needed to set up PC or workstation environments
with the right licenses, installations, access rights, etc., and to familiarize the subjects with the tools. Moreover, the tools
must be checked to demonstrate acceptable performance and stability when many subjects are working simultaneously.

In the experiments of this survey, there is almost no discussion of the relationships among the three dimensions
subject, task, and environment. For the community to progress, this issue needs to be investigated. For example, a
professional development tool will probably become more useful the larger and more complex the tasks and application
systems become, assuming that the subjects are sufficiently proficient with the tool.

9 REPLICATION

In this survey, 20 of the experiments are described by the authors themselves as replications. These experiments
constitute 14 series of replications. Table 14 summarizes the series including both the original experiments and the
replications and reports differences between them. Most replications (35 percent) are conducted in the area of
Inspection (seven replications in series 1, 2, and 3) and Maintenance (five replications in series 4, 5, and 6). Among the 20
replications, five can be considered as close replica- tions in the terminology of Lindsay and Ehrenberg [31], i.e., one
attempts to retain, as much as is possible, most of the known conditions of the original experiment. The other
replications are considered to be differentiated replications, i.e., they involve variations in essential aspects of the
experimental conditions. One prominent variation involves conducting the experiment with other kinds of subject; three
replications use professionals instead of students, three use undergraduates instead of graduates, and one uses students
instead of professionals. Other variations include conducting the experiment on different application systems (four) and
with different tasks (three).

In all the five close replications, the results of the original experiment were confirmed (three were conducted by the same
authors, two by others). Among the 15 differentiated replications, seven were conducted by other authors. Six of these
reported results differing from the original experi- ment and one partly confirmed the results of the original experiment.
Among the differentiated replications con- ducted by the original authors, we found the opposite pattern; seven replications
confirmed the results of the original experiment and only one reported partly different results.

“Methodological authorities generally regard replication, or what is also referred to as “repeating a study,” to be a
crucial aspect of the scientific method” [31]. However, only 18 percent of the surveyed experiments were replications. A
discussion of the form and extent of replication that would benefit software engineering is beyond the scope of this
paper, but should be an issue of discussion for the research community.

 TABLE 14
Replicated Experiments

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 411

THREATS TO INTERNAL AND EXTERNAL VALIDITY
Two important aspects of the quality of an experiment are their internal and external validity. This section discusses how,
and the extent to which, threats to internal and external validity are reported for the surveyed experiments. Descriptions
of such threats are made in various ways and under different headings. For 54 experiments (48 percent of all experiments),
there is a special section entitled “Threats to (internal/external) validity” or other combinations that include the terms
“threats” or “validity.” Nine other experiments (8 percent) have special sections on threats to validity but with other
names (e.g., “Limitations to the results”). The reporting of threats to validity in yet another eight experiments were found
in other sections.

 Internal Validity
Internal validity of an experiment is “the validity of inferences about whether observed co-variation between A (the presumed
treatment) and B (the presumed outcome) reflects a causal relationship from A to B as those variables were manipulated or
measured” *37+. Changes in B may have causes other than, or alternative to, the manipulation of A. Such an alternative cause
for the outcome is called a confound or confounding factor. For further discussions (including formal definitions) of concepts
of confounding, see [21].

Threats to internal validity are addressed explicitly for 71 experiments (63 percent). (We did not include threats that are addressed
implicitly as part of the experimental design.) We classified the reporting of threats to internal validity according to the scheme of
Shadish et al. [37] shown in Table 15. That table also shows examples of threats in the various categories reported for the surveyed
experiments. A version of this scheme, with other examples from software engineering, is presented in [46].
Table 16 shows the distribution of the experiments according to the scheme of Table 15. Almost half of all experiments report on
selection threats (46 percent) and/or instrumentation threats (40 percent). The distribution of number of threat categories reported is
as follows: 22 experi- ments report one threat, 11 experiments report two threats,
23 report three, 10 report four, four report five, and one experiment reports seven threats.

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 412

Table 16 also shows whether the authors consider the threats to be present but not handled by the authors, or reduced or eliminated
due to actions taken by the authors or due to other circumstances. Only 18 percent of the threats (reported in 23 percent of the
experiments) are not handled, but it may be the case that threats that are not reduced or eliminated are underreported.

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 413

variation. For example, the notions of statistical conclusion validity and construct validity appeared for the first time in

1979 [11].7

 External Validity

External validity concerns inferences about the extent to which a causal relationship holds over variations in persons,
settings, treatments, and outcomes [37]. This section summarizes how the authors report threats to external validity
regarding these issues.

Threats to external validity are reported for 78 experi- ments (69 percent). Table 17 shows a categorization of the

2. In addition, there are threats that scholars put in different main categories. For example, what Trochim [44] and Wohlin et al. [46] refer to as “social
threats” are categorized as threats to internal validity by them, but as threats to construct validity by Shadish et al. [37]. Four experiments address “social
threats” in our survey, but since we follow the scheme of Shadish et al., such threats are not included in our survey.

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 414

TABLE 16
Threats to Internal Validity

threats based on Shadish et al. [37]. Threats regarding subjects are discussed in a total of 67 experiments (rows one, four, five,

six, and seven), regarding task in 60, environment in 23, and treatment in six.
Most threats regarding subjects deal with difficulties of

generalizing from students to professionals (45 experi- ments). Another category of experiments (14) also uses students,

but the experimenters argue that this may not be a threat to validity because the students for this kind of task would
(probably) have the same ability as professionals (seven), because the students were close to finalizing their education
and starting work in the industry (four), or because one other study showed no difference between students and
professionals (three). A few experiments (three) that use professionals claim that threats to external validity were not
critical because the experiment was conducted with professionals (they did not discuss the representation of their actual

sample of professionals). A few experiments (three) considered that running an experi- ment within a single organization

was a threat to the generalization to other organizations. Very few experiments (two) explicitly described the lack of random
sampling as a threat to validity.

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 415

Most of the task-related threats concern size and complexity of the tasks (16 experiments) and experimental material (34),

such as program code, inspection documents, and database systems. For experiments on inspection, one threat discussed was

that the inspection process applied was not considered representative for industrial practice (nine). The (short) duration of

the experiment was also regarded as a threat (three). One experiment stated that “all our results were obtained from one

project, in one application domain, using one language and environment, within one software organization. Therefore, we cannot

claim that our conclusions have general applicability, until our work has been replicated.” Another experiment stated that the

subjects might not have used the technique intended to be studied in the experiment.

Threats regarding environment were either stated as a problem of generalizing from the experimental setting with no
specific reasons (five experiments) or stated with concrete reasons for the difficulties: use of laboratory or classroom
(nine), individual work (five), and use of pen and paper (six).

A major finding is that the reporting is vague and unsystematic. The community needs guidelines that

TABLE 17

Threats to External Validity

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 416

provide significant support for how to draw conclusions from the experimental results and on how to address threats to
internal and external validity and their con- sequences.

11 THREATS TO THE VALIDITY OF THIS SURVEY

The main threats to validity for this study are publica- tion selection bias, inaccuracy in data extraction, and
misclassification.

 Selection of Journals and Conferences

We consider the 12 surveyed journals and conferences to be leaders in software engineering in general and empirical
software engineering in particular. (Our selection of journals is a superset of those selected by others, as shown in Table
1.) Nevertheless, a systematic survey that included, in addition, gray literature (theses, technical reports, work- ing papers,
etc.) describing controlled experiments in software engineering would, in principle, provide more data and allow more
general conclusions to be drawn [29].

 Selection of Articles

To help ensure an unbiased selection process, we defined research questions in advance, organized the selection of
articles as a multistage process, involved several researchers in this process, and documented the reasons for inclusion/
exclusion as suggested in [29].

The initial investigation of the titles and abstracts of 5,453 articles resulted in 140 survey articles. Based on recorded
comments, 80 of these were reanalyzed by one or two other researchers and discussed in the project group. Seventeen further
articles were then excluded because they described studies without a treatment. Moreover, three articles were found to be
exploratory, observational, or constituting a prestudy. Eight were found to fall outside the field of software engineering, five
were excluded on the grounds that they were summary articles, while four articles described multiple case studies. We
used Inspec and various search engines to check the completeness of our inclusion and cross-checked for inclusion with
other surveys [51], [22], [25]. Still, the process was difficult and we may not have managed to detect all articles that we
would have liked to include.

Another challenge was that there is no keyword standard that we are aware of that distinguishes between methods in
empirical software engineering and that could be used to extract controlled experiments in a consistent manner. For
example, none of the selected articles matched the IEEE keyword taxonomy; indeed, this taxonomy has no appropriate
keywords for the methods of empirical soft- ware engineering. (MIS Quarterly has ceased to use their keyword
classification scheme due to the presence of full- text search engines and the difficulty of keeping keyword classification
schemes up to date [45].)

Moreover, article and experiment duplication is a potential threat to frequency counts and the statistics in this survey.
Among the 113 experiments covered in the 103 articles, 109 are reported in one article, two are reported in two articles,
one is reported in three articles, and one is reported in four. Among the 103 surveyed articles, 91 report a single experiment,
seven report two experiments, and five

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 417

report three experiments. We detected one case of near article duplicates in different journals. The structure of the database
is designed to handle duplication, but a threat would be that duplication goes undetected. However, at least three people
have read through all relevant articles without detecting further duplicates.

 Data Extraction

The data was extracted from the articles independently by two researchers. The interrater agreement varied from

73 percent to 100 percent. Disagreements were resolved by discussion and, when necessary, by involving other project
members. Data extraction from prose is difficult at the outset and the lack of standard terminology and standards for
reporting experiments in software engineer- ing may have resulted in some inaccuracy in the data.

 Classification to Topics

The classification of articles to topics was done in two steps. First, the articles were classified automatically on the basis of
title, list of keywords, and registered treatment. Then, this classification was double-checked by two researchers. The
interrater agreement between the algorithm and the two researchers was 75 percent for the comparative classification
using Glass et al.’s scheme and 66 percent for the IEEE-classification. The topic classification was difficult due to the
lack of a well-defined method of classifying according to the schemes used.

12 SUMMARY

This paper reported a survey that characterized quantita- tively the controlled experiments in software engineering

published in nine journals and three conference proceed- ings in the decade from 1993 to 2002. Included were

randomized experiments or quasi-experiments in which individuals or teams (the experimental units) applied a process,

method, technique, language, or tool (the treat- ments) to conduct one or more software engineering tasks. Out of 5,453

articles scanned, we identified 103 articles that reported 113 controlled experiments.

Although as many as 108 institutions from 19 countries
were involved in conducting the experiments, a relatively low proportion of software engineering articles (1.9 percent)

report controlled experiments, given that controlled experi- ments is the classical scientific method for identifying cause-

effect relationships. One reason may be the large effort and resources needed to run well-designed experiments.
An important issue that pertains to all software engineer-

ing research is its relevance to the industry. For experiments, both the topics under investigation and how representative of
an industrial setting an experiment is will influence industrial relevance. The two major areas investigated in the experiments
were inspection techniques and object-oriented design techniques. This survey also gave some indications as to how realistic
the experiments were relative to the subjects that took part, the tasks they performed, the types of applications on which these
tasks were done, and the environment in which the subjects worked.

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 418

TABLE 18
Total Number of Articles Investigated

In total, 5,488 subjects participated in the experiments. The number of participants ranged from 4 to 266 with a mean
value of 49. In total, 87 percent of the subjects were students, whereas only 9 percent were professionals. This indicates that
one may question how representative the experimental results are for an industrial setting.

The same applies to the kind of application used in the experiments. In 75 percent, the applications were con- structed for
the purpose of the experiment or constituted student projects. Commercial applications were used in 14 percent of the
experiments.

Threats to internal and external validity were addressed in, respectively, 63 percent and 69 percent of the experi- ments.

Among the threats to internal validity, about 1/5 were not handled, 3/5 were reduced, and 1/5 were eliminated. This could

either mean that the experiments all over had a high degree of internal validity or that the internal threats that were not

reduced or eliminated were underreported. Threats to external validity regarding subject and task were discussed in more

than half of the experiments, regarding environment in about 1/4 of the

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 419

experiments and regarding treatment in only a few. Threats to internal validity regarding selection and instrumentation

were most frequently reported.

A major finding of this survey is that the reporting is
often vague and unsystematic and there is often a lack of consistent terminology. The community needs guidelines that
provide significant support on how to deal with the methodological and practical complexity of conducting and reporting
high-quality, preferably realistic, software engi- neering experiments. We recommend that researchers should accurately
report the following: the type and number of subjects, including the mortality rate; context variables such as general
software engineering experience and experience specific to the tasks of the experiments; how the subjects were recruited;
the application areas and type of tasks; the duration of the tasks; and internal and external validity of the experiments,
including being specific about the sample and target population of the experiment. A more uniform way of reporting
experiments will help to improve the review of articles, replication of experiments, meta- analysis, and theory building.

TABLE 19

Number of Articles that Report Controlled Experiments

http://www.jst.org.in/
http://www.jst.org.in/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 420

APPENDIX

See Table 18 and Table 19.

ACKNOWLEDGMENTS

The authors are grateful to Barbara Kitchenham, Ray Welland, Erik Arisholm, Reidar Conradi, Tore Dybå, Magne

Jørgensen, James Dzidek, and the anonymous reviewers for insight and feedback to several key issues covered in this

survey. Thanks are due to Jørgen Busvold, Ingeborg Nygard, Ragnfrid Sjøberg, and Jørn Inge Vestgården for assistance

in compiling data. Thanks to Chris Wright for proofreading the paper.

REFERENCES

[1] A. Abran and J.W. Moore, “SWEBOK—Guide to the Software Engineering Body of Knowledge,” 2004 Version, IEEE CS Profes- sional Practices
Committee, 2004.

[2] ACM Computing Classification, http://theory.lcs.mit.edu/jacm/ CR/1991, 1995.
[3] E. Arisholm and D.I.K. Sjøberg, “Evaluating the Effect of a Delegated versus Centralized Control Style on the Maintainability of Object-Oriented

Software,” IEEE Trans. Software Eng., vol. 30, no. 8, pp. 521-534, Aug. 2004.
[4] V.R. Basili, “The Experimental Paradigm in Software Engineer- ing,” Experimental Eng. Issues: Critical Assessment and Future Directions,

Proc. Int’l Workshop, vol. 706, pp. 3-12, 1993.
[5] V.R. Basili, “The Role of Experimentation in Software Engineering: Past, Current, and Future,” Proc. 18th Int’l Conf. Software Eng., pp. 442-

449, 1996.
[6] V.R. Basili, R.W. Selby, and D.H. Hutchens, “Experimentation in Software Engineering,” IEEE Trans. Software Eng., pp. 733-743, July 1986.
[7] V.R. Basili, F. Shull, and F. Lanubile, “Building Knowledge through Families of Experiments,” IEEE Trans. Software Eng., vol. 25, pp. 456-

473, July/Aug. 1999.
[8] D.M. Berry and W.F. Tichy, “Response to ‘Comments on Formal Methods Application: An Empirical Tale of Software Develop- ment,’” IEEE

Trans. Software Eng., vol. 29, no. 6, pp. 572-575, June 2003.
[9] D.T. Campbell and J.C. Stanley, “Experimental and Quasi- Experimental Designs for Research on Teaching,” Handbook of Research on

Teaching, N.L. Cage, ed., Chicago: Rand McNally, 1963.
[10] L.B. Christensen, Experimental Methodology, eighth ed. Boston: Pearson/Allyn & Bacon, 2001.
[11] T.D. Cook and D.T. Campbell, Quasi-Experimentation. Design & Analysis Issues for Field Settings. Houghton Mifflin, 1979.
[12] B. Curtis, “Measurement and Experimentation in Software Engineering,” Proc. IEEE, vol. 68, no. 9, pp. 1144-1157, Sept. 1980.
[13] B. Curtis, “By the Way, Did Anyone Study Real Programmers?” Empirical Studies of Programmers, Proc. First Workshop, pp. 256-262, 1986.
[14] I.S. Deligiannis, M. Shepperd, S. Webster, and M. Roumeliotis, “A Review of Experimental Investigations into Object-Oriented Technology,”

Empirical Software Eng., vol. 7, no. 3, pp. 193-231, Sept. 2002.
[15] A. Endres and D. Rombach, A Handbook of Software and Systems Engineering: Empirical Observations, Laws, and Theories, Fraunhofer IESE series

on software engineering. Pearson Education Limited, 2003.
[16] N. Fenton, “How Effective Are Software Engineering Methods?”

J. Systems and Software, vol. 22, no. 2, pp. 141-146, 1993.
[17] R. Ferber, “Editorial: Research by Convenience,” J. Consumer Research, vol. 4, pp. 57-58, June 1977.
[18] R.L. Glass and T.Y. Chen, “An Assessment of Systems and Software Engineering Scholars and Institutions (1998-2002),”

J. Systems and Software, vol. 68, no. 1, pp. 77-84, 2003.
[19] R.L. Glass, V. Ramesh, and I. Vessey, “An Analysis of Research in Computing Disciplines,” Comm. ACM, vol. 47, no. 6, pp. 89-94, June 2004.

http://www.jst.org.in/
http://www.jst.org.in/
http://theory.lcs.mit.edu/jacm/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp47 - 52

Published by: Longman Publishers www.jst.org.in
Page | 421

[20] R.L. Glass, I. Vessey, and V. Ramesh, “Research in Software Engineering: An Analysis of the Literature,” J. Information and Software Technology,
vol. 44, no. 8, pp. 491-506, June 2002.

[21] S. Greenland, J.M. Robins, and J. Pearl, “Confounding and Collapsibility in Causal Inference,” Statistical Science, vol. 14, no. 1, pp. 29-46,
1999.

[22] W. Hayes, “Research Synthesis in Software Engineering: A Case for Meta- Analysis,” Proc. Sixth Int’l Symp. Software Metrics, pp. 143-
151, 2003.

[23] M. Hö st, C. Wohlin, and T. Thelin, “Experimental Context Classification: Incentives and Experience of Subjects,” Proc. 27th Int’l
Conf. Software Eng., pp. 470-478, 2005.

[24] IEEE Keyword Taxonomy, http://www.computer.org/mc/ keywords/software.htm, 2002.
[25] M. Jørgensen, “A Review of Studies on Expert Estimation of Software Development Effort,” J. Systems and Software, vol. 70, nos. 1,2, pp. 37-60,

2004.
[26] M. Jørgensen and D.I.K. Sjøberg, “Generalization and Theory Building in Software Engineering Research,” Empirical Assessment in Software

Eng. Proc., pp. 29-36, 2004.
[27] M. Jørgensen, K.H. Teigen, and K. Moløkken, “Better Sure than Safe? Over-Confidence in Judgement Based Software Develop- ment Effort

Prediction Intervals,” J. Systems and Software, vol. 70, nos. 1,2, pp. 79-93, 2004.
[28] N. Juristo, A.M. Moreno, and S. Vegas, “Reviewing 25 Years of Testing Technique Experiments,” Empirical Software Eng., vol. 9, pp. 7-44,

Mar. 2004.
[29] B.A. Kitchenham, “Procedures for Performing Systematic Re- views,” Technical Report TR/SE-0401, Keele University, and Technical Report

0400011T.1, NICTA, 2004.
[30] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K. El-Emam, and J. Rosenberg, “Preliminary Guidelines for Empirical

Research in Software Engineering,” IEEE Trans. Software Eng., vol. 28, no. 8, pp. 721-734, Aug. 2002.
[31] R.M. Lindsay and A.S.C. Ehrenberg, “The Design of Replicated Studies,” The Am. Statistician, vol. 47, pp. 217-228, Aug. 1993.
[32] C. Lott and D. Rombach, “Repeatable Software Engineering Experiments for Comparing Defect-Detection Techniques,” Em- pirical Software Eng.,

vol. 1, pp. 241-277, 1996.
[33] J.W. Lucas, “Theory-Testing, Generalization, and the Problem of External Validity,” Sociological Theory, vol. 21, pp. 236-253, Sept. 2003.
[34] T.R. Lunsford and B.R. Lunsford, “The Research Sample, Part I: Sampling,” J. Prosthetics and Orthotics, vol. 7, pp. 105-112, 1995.
[35] Experimental Software Engineering Issues: Critical Assessment and Future Directions, Int’l Workshop Dagstuhl Castle (Germany), Sept. 14- 18, 1992,

Proc., H.D. Rombach, V.R. Basili, and R.W. Selby, eds. Springer Verlag, 1993.
[36] P. Runeson, “Using Students as Experimental Subjects—An Analysis of Graduate and Freshmen PSP Student Data,” Proc. Empirical

Assessment in Software Eng., pp. 95-102, 2003.
[37] W.R. Shadish, T.D. Cook, and D.T. Campbell, Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Hought- on Mifflin,

2002.
[38] M. Shaw, “Writing Good Software Engineering Research Papers: Minitutorial,” Proc. 25th Int’l Conf. Software Eng., pp. 726-736, 2003.
[39] D.I.K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Karahasanović, E. Koren, and M. Vokáč, “Conducting Realistic

Experiments in Software Engineering,” Proc. 18th Int’l Symp. Empirical Software Eng., pp. 17-26, 2002.
[40] D.I.K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Karahasanović, and M. Vokáč, “Challenges and Recommenda- tions

when Increasing the Realism of Controlled Software Engineering Experiments,” Empirical Methods and Studies in Soft- ware Eng., pp. 24-
38, Springer Verlag, 2003.

[41] W.F. Tichy, “Should Computer Scientists Experiment More? 16 Excuses to Avoid Experimentation,” Computer, vol. 31, no. 5, pp. 32-40,
May 1998.

[42] W.F. Tichy, “Hints for Reviewing Empirical Work in Software Engineering,” Empirical Software Eng., vol. 5, no. 4, pp. 309-312, 2000.
[43] W.F. Tichy, P. Lukowicz, L. Prechelt, and E.A. Heinz, “Experi- mental Evaluation in Computer Science: A Quantitative Study,”

J. Systems and Software, vol. 28, no. 1, pp. 9-18, Jan. 1995.
[44] W.M.K Trochim, The Research Methods Knowledge Base, second ed., Cincinnati: Atomic Dog Publishing, 2001.

http://www.jst.org.in/
http://www.jst.org.in/
http://www.computer.org/mc/

Journal of Science and Technology
ISSN: 2456-5660 Volume 7, Issue 02 (March-April 2022)
www.jst.org.in DOI:https://doi.org/10.46243/jst.2022.v7.i02.pp395 - 422

Published by: Longman Publishers www.jst.org.in
Page | 422

[45] R. Weber, “Editor’s Comments,” MIS Quarterly, vol. 27, no. 3, pp. iii-xii, Sept. 2003.
[46] C. Wohlin, P. Runeson, M. Hö st, M.C. Ohlsson, B. Regnell, and A. Wesslen, Experimentation in Software Eng.: An Introduction. John Wiley &

Sons Inc., 1999.
[47] R.K. Yin, Case Study Research: Design and Methods. Thousand Oaks, Calif.: Sage, 2003.
[48] E.A. Youngs, “Human Errors in Programming,” Int’l J. Man- Machine Studies, vol. 6, no. 3, pp. 361-376, 1974.
[49] M.V. Zelkowitz and D. Wallace, “Experimental Validation in Software Engineering,” J. Information and Software Technology, vol. 39, pp. 735-

743, 1997.
[50] M.V. Zelkowitz and D. Wallace, “Experimental Models for Validating Technology,” Theory and Practice of Object Systems, vol. 31, no. 5,

pp. 23-31, May 1998.
[51] A. Zendler, “A Preliminary Software Engineering Theory as Investigated by Published Experiments,” Empirical Software Eng., vol. 6, no. 2,

pp. 161-180, 2001.
[52] G.H. Zimney, Method in Experimental Psychology. New York: Ronald Press, 1961.

http://www.jst.org.in/
http://www.jst.org.in/

