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Abstract 

In this paper, we have proposed data-driven methods to enhance the interrogation and reliability of 
Chip-less Radio Frequency Identification systems. Six binary combinations of an 8-bit RFID tag are 
fabricated on a Rogers RT / Duroid ® 5880 substrate with a permittivity of 2.2 and a loss tangent of 0.0009 
to create the model dataset. The tag's frequency response encompasses eight identifiable frequency 
resonances in the 3–10 GHz frequency band. By analyzing the spectral signature of the backscattered 
chip-less RFID tags at possible reach and orientation, two distinct datasets corresponding to ideal (within the 
anechoic chamber) and natural environments are prepared. The data sets are trained and evaluated using 
the SVM, KNN, DT and DNN approaches. A validation accuracy of 97.5% is obtained for the DNN model in 
actual environmental conditions in the presence of clutter and noises. The DNN model attains an accuracy of 
99.5% on the ideal dataset and 97.5% on the actual dataset. The model extracted tag information up to 70cm 
from the interrogator, which is about a 20% increase in reading range compared to conventional interrogation 
methods. 

 
KEYWORDS: anechoic chamber; barcode; chipless rfid; deep Learning; svm. 

I. INTRODUCTION 

Radiofrequency identification and sensing technology have received a pervasive response in recent years 
due to their great promises in the field of manufacturing (Abdullah et al., 2020), agriculture (Sedghy, 2019) 

and the Internet of Things (IoT) (Mulloni & Donelli, 2020). RFID tags have attracted substantial interest 

over their predecessor barcodes, owing to features such as long reading range, high data rate, high level of 

security, readability without Line of Sight and the possibility to read multiple tags simultaneously (Akbari 
et al., 2015). RFID technology encompasses classical radio frequency identification with chip (Active and 

Semi passive)) and chipless RFID. Conventional RFID systems follows a technology that has already been 

developed, optimised, and incorporated , while chipless RFID has recently been adopted  primarily to 
minimize the tag price(Herrojo et al., 2019). As it eliminates the costs involved with silicon IC spall in the 

circuit, chipless RFID technology is undeniably a significant advancement in overcoming the margins and 

constraints of traditional RFID systems. 
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In the open literature, chipless RFID tags with varying information density per surface (DPS) have been 

reported, such as time domain reflectometry tags (Girbau et al., 2012), spectral signature-based chipless 

tags (Preradovic et al., 2009), and Amplitude/Phase backscatter modulation-based chipless tags. 

Frequency-domain tags offer higher coding capacity and are prevalent in the existing literature. They can 
be either a re-transmission type tag (Nijas et al., 2012) or a backscattered type tag (Nijas et al., 2014). 

Backscattered chipless RFID tags are composed of multiple resonant elements that scatter the 

ultra-wideband signal from the interceptor depending on the geometry of the individual components and 
the dielectric constant of the substrate material. The resultant resonance may be encoded using the 

Absence / Presence Coding method or the Frequency Shift Coding approach (Mandal et al., 2019). 

Figure 1  Block diagram of a basic chipless radio frequency identification (RFID) system. 
Even though chip-less RFID tags are gaining popularity in the supply chain sector since they are less 

expensive than conventional RFIDs, they are still in the prototype stage (Costa et al., 2021). It's challenging 

to evaluate the RCS generated by the backscattered tag and obtain the encoded information from the faint 
received signal without a chip. Due to their passive nature, chipless RFID tags have inherent drawbacks, 

such as limited data encoding capacity, short reading range, and high sensitivity to disruptions and 

interferences. As a result, accurate extraction of tag information from complex power values necessitates 

careful calibration, proper Time-Gating, strategic measurement choices (Nikitin & Rao, 2006), and efficient 
Clutter Suppression methodologies (Fawky, Khaliel, El-Awamry, El-Hadidy, & Kaiser, 2015). 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

The possibility of an ideal environment may not be available when implementing RFID systems in 
practice, and conventional signal processing methods often fail to estimate the spectral signature of the tag 

from background clutter and noises. This paper aims to enhance the reading range and overall reliability of 

the chipless RFID systems using the state of the art machine learning concepts. Machine learning has 

made considerable strides in numerous disciplines, from Machine vision systems (Khan & Al-Habsi, 2020) 
to natural language processing (Klosowski, 2018).  Artificial neural networks (ANNs) are computational 

models that resemble the behaviour of the human nervous system and come in a variety of shapes and 

sizes depending on their data stream, neuron density, layers, and activation filters such as Feedforward 
Neural Network, Multilayer Perceptron, Convolutional Neural Network, Recurrent Neural Network, and so 

on. 

In Nijas and Deepak et al., a conventional method followed to design and identify a compact multiple-bit 
encoded chipless RFID tag using a stepped impedance resonator (SIR) is proposed. The tag utilizes the 

SIR's fundamental and the first harmonic frequency to represent two-bit information with a single 

resonator. The suggested RFID tags have an operating range of 50cm in the outdoor environment.  
In this article, contemporary neural network models' immense pattern recognition abilities are being 

exploited to categorize the EM signatures generated by chipless RFID tags. The experiment considered ideal 

conditions with minimum environment noises and practical scenarios with background clutter and 

distractions. The response of six proof of concept RFID tags is measured using a vector network analyser in 
ideal and actual environments at a different distance(r) and orientation (θ). For the study, the tag described 

in Nijas and Deepak et al. is considered. The dataset prepared is analysed and evaluated using Support 

Vector Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree (DT) and Deep Neural Network (DNN) 
models. 
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II. METHODOLOGY 

A. Design Parameters 

The analytical approach for determining the SIR's fundamental and harmonic modes of operation is 

described in Chi-Feng Chen, Ting-Yi Huang, Chi-Ping Chou, and Ruey-Beei Wu, 2006; Kirschning, Jansen, 
and Koster, 1981; and Sheng-Yuan Lee, 2005. Figure 2 illustrates a typical geometry of the λg/2 type 

Stepped Impedance Resonator with open and short-circuited extremities and a step transition. Z1 and Z2 

denote the Characteristic impedances, and θ1 and θ2 indicate the equivalent electrical length of the SIR 
elements. 

 
 

Figure 2 Design parameters of a basic SIR element. 

By selecting an appropriate combo of Length Ratio (K) and Impedance ratio (θ), the fundamental 
frequency (f0) and subsequent higher order frequencies may be precisely computed. Figure 3 shows the 

conditions for representing 11, 10 and 01- bit patterns. Λ/2 SIR is required for representing 11- bit 

configuration, whereas λ/4 with shorted or open end will generate 10 or 01 combinations, respectively. All 

28-bit combinations are possible by adequately configuring the SIR elements, as explained. Based on the 
design parameters explained, tags corresponding to binary combinations of 0 X 44, 0 X 55, 0 X 66, 0 X 77, 

0 X 33 and 0 X FF are fabricated on Rogers RT / Duroid ® 5880 substrate with a permittivity of 2.2 and loss 

tangent of 0.0009 as illustrated in figure 4.  

 
Figure 3 SIR elements for different bit represent- tation a) Bit 11, b) Bit 01, c) Bit 10, where L1, L2, L2' 

represent the length of individual portions. 

Fundamental and first harmonic modes of SIRs, along with Presence or Absence Coding technique is 
effectively employed in the design and using 4 SIR elements, 8 bit of information is encoded. 
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Figure 4 RFID tags fabricated on Rogers RT / Duroid ® 5880 substrate. a) 0X44,b) 0X55,c) 0X66,d) 0X77,e) 

0X33,f) 0XFF 
B. Measurement 

Figure 5 illustrates the measurement setup utilized. The procedures followed in the investigation are 

depicted in figure 6.  The interrogator is a single wideband medium gain horn antenna that transmits 
Gaussian pulses with frequencies ranging from 3GHz to 10GHz. The source for the measurements is an 

ROHDE & SCHWARZ ZVB20 Network Analyzer. As shown in the image, the tag under measurement is 

mounted on an acrylic holder that may be precisely moved or rotated.  

 
 

Figure 5 Measurement setup utilized in the experiment. 

The frequency response of the backscattered chipless RFID tag is determined by adjusting r and θ, where 
r is the distance of the tag from the interrogator and θ is the orientation angle, as shown in figure 1. A paper 

box (28cm by 25cm by 5.6cm) is often placed in the vicinity of the tag and the interrogator to replicate the 

effect of clutter. 
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The experiment addressed both limited and realistic situations, and two independent data sets were 
created to compare the efficacy of the deep learning model. The first set of data is collected in an ideal 

setting by conducting the experiments in an anechoic room, as illustrated in figure 5, with 

microwave-absorbing materials covering the walls, floor, and ceiling.  The polyurethane foam impregnated 

with carbon black ferrite ensures a free space environment by absorbing electromagnetic reflections from 
surroundings (Fan, 2019). Figure 6a depicts the resonance produced by different RFID tags inside the 

anechoic chamber. The fluctuation in tag resonance as a function of distance from the horn antenna is 

shown in figure 6b. The fundamental and harmonic frequencies solely depend on the length of the 
resonator, and the first harmonic frequency will be equal to twice the fundamental frequency. 

The measurements were repeated outside the anechoic laboratory in real-world settings, and a second 

dataset was also created. Figure 6c shows the response of the tag at two different positions outside the 
anechoic chamber. From figure 6c, it is clear that in practical situations, the response is disturbed by 

environmental factors. As the separation between the interrogator and tag increases, the response 

obtained becomes significantly distorted. 
C. Dataset  

The Network analyzer was configured with 1001 data points per measurement and bandwidth of 7GHz 

ranging from 3-10GHz. The Scattering parameter S11 determined will have 1001 distinct reflection values 

with an interval of 0.007GHz between the 3 to 10GHz frequency span. Six different RFID tag classes are 
considered corresponding to 0X33, 0X44, 0X55, 0X66, 0X77 and 0XFF hexadecimal combinations. 
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The first dataset includes a total number of 399 measurements per tag with the following variables; 1) 

range(r) from 5cm to 30cm in steps of 5cm, 2) range(r) from 30cm to 70cm in steps of 5cm in the presence 

of clutter (paper box),  3) angle θ from -90° to +90° in steps of 10°.  In real-life measurement, external 

reflections and clutter have a negative impact on the tag resonance, as shown in figure 6c. Also, each 
observation under the same physical conditions may vary due to measurement errors or ambient changes. 

A rather more extensive data set is necessary to endure such disturbance and extract the underlying tag 

signature. Each measurement is repeated roughly three times with more resolution to account for 
environmental changes and background biasing. The second dataset includes a total number of 777 

measures per tag with the following variables; 1) range(r) from 5cm to 30cm in steps of 5cm, 2) range(r) 

from 30cm to 90cm in steps of 5cm in the presence of clutter (paper box),  3) angle θ from -90° to 90° degree 
in steps of  5°. 

The measured S11 parameter is represented as a one-dimensional array (1x1001). The overall size of each 

dataset is determined by analyzing the training complexity and model performance. The first dataset 
contains 2394x1001 entries.  The second dataset includes 14986x1001 entries.  Min-Max scaling is 

applied to normalize the data that has been mapped from 0-90dB to 0-1. The dataset uses one hot encoding 

to categorize RFID tags. The diversity of information in the dataset can be further increased by assessing 

variations in the real/imaginary component of the reflection coefficient or phase variations in the 

backscattered signal. 

D. Deep Learning Methodology 

In general, there are two main steps to solving a classification problem with data-driven algorithms: (a) 
preparing an appropriate dataset in terms of diversity and quality and (b) selecting an efficient machine 

learning model that results in high prediction accuracy for unseen test samples to support generalizability 

and avoid biasing. A diverse dataset with enough records considering actual and ideal scenarios is created 
by interrogating six different RFID tags, as explained in section C.  Popular data-driven approaches such as 

SVM, KNN, DT and DNN were examined on the distribution to identify the best model for classifying RFID 

tags. 
For the classification problems, the objective of the Support Vector Machine model is to determine an 

appropriate boundary or hyperplanes distinguishing the possible outputs depending on the kernel 

function specified (Dai & Dong, 2020). KNN is a non-linear learning method that calculates the Euclidean 

distance between all points near the new information, and the points with the shortest distances are 
chosen as the best candidates. The decision tree (DT) algorithm is used in the third classifier.  

A decision is reached using this non-parametric divide and conquers methodology by traversing a 

hierarchical graph from a root location to a leaf node (Patel & Prajapati, 2018). Deep neural networks follow 
a hierarchical learning process which involves a series of non-linear blocks that each converts a depiction 

at one stage into an illustration at a larger, slightly more abstract level. Complex patterns and relations can 

be inferred by combining enough of these transitions (LeCun, Bengio, & Hinton, 2015).  

 Figure 7 Block diagram of the DNN model 
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Formally, algorithms learn distribution by simplifying weight vectors. The optimization of model 

parameters based on the distribution will improves the accuracy of the model. The aforementioned models 

were trained and validated on both the dataset and their accuracy is compared.  The DNN model is found to 

be performing well on the dataset and the details of the model is described below. 

 
(a) 

 
(b) 

Figure 8 a) DNN Accuracy plot inside the Anechoic Chamber, b) DNN Accuracy plot outside the Anechoic 
Chamber 

DNN used here features an input layer that accepts flattened S11 parameters, followed by a set of hidden 

layers and an output layer. The input to the first layer represents the reflection measured at each frequency 
point as [S11(f1),S11 (f2).....S11 (f1001)]. Here, a random search optimization algorithm is used, and the final 

model diagram is shown in figure 7.  Hyperparameter optimization yields an optimal model with an 

adequate number of hidden units that minimizes the predetermined loss function and hence improves the 
accuracy on the given distribution. ReLU activation is employed in fully-connected layers considering the 

computational efficiency, sparsity and reduced likelihood of vanishing gradient. The regularization layer 

with a dropout rate of 0.25 is introduced to enhance the quality of features by minimizing co-adaptations 

and over-fitting. The output layer uses Soft-Max as the activation function and has six neurons correlating 
to the six chipless-ID classes. A 3 fold cross validation was also performed to confirm the performance of 

the models. 

III. RESULTS AND DISCUSSION 

As explained in the previous section, the neural network model is evaluated using two independent 

datasets that address actual and ideal circumstances. The ideal dataset has dimensions of 2394 X 1001, 

whereas the actual measurement has dimensions of 13986 X 1001. The measurements cover distance r 
ranging from 5cm to 100cm and angle (θ) from 0 to ±90°. Both the dataset is further divided into a train 

(80%) and test data (20%).  

The model is examined for different ranges of distance and angle combinations to ascertain how far apart 
from the reader an effective interrogation is possible. The training is carried out for various distances and 

angles ranging from 40cm-100cm and 40-90° in steps of 10cm/10°, with performance being logged.   

Figures 8a and 8b show the learning curve representing the validation accuracy over time for the two 
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datasets. The confusion matrix of both the scenarios is also included in figures 9a and 9b for better 

illustration. 

With the ideal dataset, the model acquires a validation accuracy of 99.5%, as shown in figure 9a, with 
minimum model complexity and observations. The model successfully recognized each tag from 5cm to 

about 70cm covering an angle (θ) of ±65°. When the off-diagonal elements of the confusion matrix shown in 

figure 9a are examined, it becomes clear that the model doesn't quite mix up among different classes. 

Figure 10a shows the change in the validation accuracy as the tag is moved or rotated away from the 
interrogator. As shown in the diagram, the model performs well up to 70cm and 65° from the interrogator 

with an accuracy of over 99%. Once the tag is moved beyond 70cm or rotated beyond 65°, the accuracy falls 

abruptly. 

 
(a) 

Figure 9 a) Confusion matrix obtained for ideal dataset b) Confusion matrix obtained for the actual 
dataset. 

       (a)                    (b) 
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(b) 

Figure 10 a) Validation accuracy as a function of r b) Validation accuracy as a function of θ. 

 
(a) 

 
(b) 

Figure 11. a) Performance comparison of different models on the ideal dataset b) Performance comparison 
of different models on the actual dataset 

In the second data set, the reflections from the environment and other noises affected the signal received 

by the interrogator. A diverse dataset is important in avoiding the clutter noises and disturbances affecting 
the backscattered signal and extracting the tag resonance. As in diagram 8, a complex DNN model with 

more neurons and hidden layers optimized with a random search optimization algorithm is used.  

The model attains a validation accuracy of 97.5%, as shown in figure 8b. The model successfully 
recognized each tag from 5cm to about 65cm covering an angle of ±65°, as shown in figure 10b. The 

findings demonstrate that even in real-life situations outside of the anechoic chamber, the DNN model used 

can extract the signatures of individual RFID Tags. 

As per Nijas and Deepak et al., the RFID tag considered in the experiment was successfully measured 
from 5 cm to 50cm, with an angle θ ±60° inside and outside anechoic conditions. Beyond that, the response 
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from the interrogator is not visible using conventional methods.  However, when deep learning models were 

used, the interrogator was able to distinguish RFID tags up to 70cm in ideal conditions and up to 65cm in 

actual conditions with a slight improvement in interrogation angle. 

To compare the performance of the DNN model with other machine learning techniques, both datasets 
are evaluated using SVM, KNN, and Decision Tree approaches. Threefold cross-validation was also 

performed on all the selected models to corroborate the findings in figure 11. The box plots illustrated in 

figure11a and 11b show that deep neural network models outperform other machine learning models when 
optimized appropriately within and outside the anechoic chamber. 

IV.  CONCLUSION 

In this paper, the implementation of data-driven models to enhance the interrogation ability and 
robustness of chipless RFID systems were demonstrated. The experiments addressed ideal environment 

conditions within an anechoic chamber and practical scenarios outside the anechoic chamber. The 

influence of other objects in the interrogation zone and the effect of reader orientation and positions are 
also examined. Two different datasets are prepared corresponding to the ideal and actual environmental 

conditions. The measurements are carried out with the following variables; 1) range(r) from 5cm to 100cm 

in the presence of clutter (paper box), 2) angle θ from -90° to +90°. The datasets prepared are trained and 

validated using the SVM, KNN, DT and DNN approach. When evaluating the performance of different 
models, the deep neural network model is found to be achieving better accuracy compared to other models. 

The DNN model attains an accuracy of 99.5% on the ideal dataset and 97.5% on the actual dataset. The 

model extracted tag information up to 70cm from the interrogator, which is about a 20% increase in 
reading range compared to conventional interrogation methods.  The method described here is scalable and 

generalizable to any number of tags or bits with a different environment or noises. 
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