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Abstract: In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in 

computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this 

work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised 

learning. We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that 

have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning. 

Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair 

learns a hierarchy of representations from object parts to scenes in both the generator and discriminator. The 

generator uses tf.keras.layers.conv2Dtranspose (up sampling) layers to produce an image from a seed (random 

noise). Start with a dense layer that takes this seed as input, then up sample several times until you reach the desired 

image size of 28x28x1. The discriminator is a CNN-based image classifier. The model will be trained to output 

positive values for real images, and negative values for fake images. We define the Generator loss and the 

discriminator loss and we finally we get new images that look similar to our input(MNIST) images. 
Key Word: Supervised learning, unsupervised learning, Generator, discriminator, Generator loss, 

Discriminator loss 

_____________________________________________________________________________________ 

I. Introduction 
 Learning reusable feature representations from large unlabeled datasets has been an area of active research. 

In the context of computer vision, one can leverage the practically unlimited amount of unlabeled images and videos 

to learn good intermediate representations, which can then be used on a variety of supervised learning tasks such as 

image classification. We propose that one way to build good image representations is by training Generative 

Adversarial Networks (GANs) (Goodfellow et al., 2014), and later reusing parts of the generator and discriminator 

networks as feature extractors for supervised tasks. GANs provide an attractive alternative to maximum likelihood 

techniques. One can additionally argue that their learning process and the lack of a heuristic cost function (such as 

pixel-wise independent mean-square error) are attractive to representation learning. GANs have been known to be 

unstable to train, often resulting in generators that produce nonsensical outputs. There has been very limited 

published research in trying to understand and visualize what GANs learn, and the intermediate representations of 

multi-layer GANs.  

Generative Adversarial Networks(GAN) belong to the set of generative models(Goodfellow al.,2014). The 

GAN model consists of two networks 

● A generative network G(.) that takes in random input z and returns x_g=G(z) that should follow the 

targeted probability distribution.  

● A discriminator network D(.) that takes image vector x_image and classifies whether the generated image 

is real or generated.  

The generator needs to learn how to create data in a way that discriminator isn’t able to distinguish as fake. 

The discriminator network has the task to determine if the image is real or fake. An intuitive way to understand 
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GAN is to imagine a forger trying to create a fake Picasso painting (Chollet, n.d.). At first, the forger(generator) is 

pretty bad at this task. As times goes on, the forger becomes increasingly competent at imitating the style of Picasso, 

and the art dealer becomes increasingly expert at spotting fakes. In the end, they have on their hands some excellent 

fake Picassos. That’s what a GAN is: a forger network and an expert network, each being trained to best the other. 

Problem Definition: To develop a neural network system that can take the handwritten digit images and generate 

new images that are similar to the input images.  

It is also focused on diminishing the loss of both the discriminator and the generator. So that generator can 

understand better about the discriminator and produce the outputs that are of mere resemblance to the input images.  

Existing System: Deep Convolutional Generative Adversarial Networks or DCGANs are the ‘image version’ of the 

most fundamental implementation of GANs. This architecture essentially leverages Deep Convolutional Neural 

Networks to generate images belonging to a given distribution from noisy data using the Generator-Discriminator 

framework.  

Generative Adversarial Networks use a generator network to generate new samples of data and a 

discriminator network to evaluate the generator’s performance. So, fundamentally, GANs’ novelty lies in the 

evaluator more than that in the generator.  

Proposed System: The goal of this project is to develop a neural network system that can take the handwritten digit 

images and generate new images that are similar to the input images. It is also focused on diminishing the loss of 

both the discriminator and the generator. So that generator can understand better about the discriminator and 

produce the outputs that are of mere resemblance to the input images. The proposed system consists of the following 

goals and advantages. 

 

II. Literature Survey 
“Implementing Deep Convolutional Generative Adversial networks” is developed by Rhan Jagtap. Here he 

generated new images from random data using DCGAN. He implemented DCGAN using TensorFlow and observed 

the results for different databases. He successfully implemented working with GANs. There are other flavors of 

GANs that produce conditional outputs and hence can prove to be very useful.  

“DCGANs- Generating dog images with Keras and TensorFlow” by Konstantin Georgiev is based on 

Kaggles generative dogs’ competition. Here he genereted images of dogs over epochs. This work is a tutorial on the 

basic ideas behind the DCGANs, as well as methods to improve their performance. As he observed the MIFID 

steadily improved for 280 epochs. They are also very computationally intensive and it is incredibly hard to build a 

high-scoring model for a runtime of ~ 9 hours.  

“How to develop a GAN to generate CIFAR-10 small color photographs” by Jason Brownlee develop a 

generative adversarial network with deep convolutional networks for generating small photographs of objects. He 

defined and trained the standalone discriminator model for learning the difference between real and fake images. He 

also defined how to evaluate the performance of the GAN and use the final standalone generator model to generate 

new images.  

“DCGAN- Image Generation” by Ashutosh chapagain explored the potential of Deep Learning to generate 

real like images. He used Deep Convolutional Generative Adversarial Network (DCGAN) which has proven to be a 

great success in generating images. He discussed the theoretical aspect of GAN and also discussed about 

methodology to create a DCGAN Model for CelebA Datasets.  

“Unsupervised Representation Learning with Deep Convolutional Generative Adversial Networks” by 

SoumithChintala. In this work we hope to help bridge the gap between the success of CNNs for supervised learning 

and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adversarial networks 

(DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for 

unsupervised learning.  

“Generative Adversial Nets” by Ian J Goodfellow e proposed a new framework for estimating generative 

models via an adversarial process, in which we simultaneously train two models: a generative model G and 

Discriminative model D that estimates the probability that a sample came from the training data rather than G. The 

training procedure for G is to maximize the probability of D making a mistake. 

 

III. Related Work 
Representation Learning from Unlabeled Data: Unsupervised representation learning is a fairly well studied 

problem in general computer vision research, as well as in the context of images. A classic approach to unsupervised 

representation learning is to do clustering on the data (for example using K-means), and leverage the clusters for 

improved classification scores. In the context of images, one can do hierarchical clustering of image patches to learn 
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powerful image representations. Another popular method is to train auto-encoders (convolutionally, stacked, 

separating the what and where components of the code, ladder structures (Rasmus et al., 2015)) that encode an 

image into a compact code, and decode the code to reconstruct the image as accurately as possible. These methods 

have also been shown to learn good feature representations from image pixels. Deep belief networks have also been 

shown to work well in learning hierarchical representations.  

Generating Natural Images: Generative image models are well studied and fall into two categories: parametric and 

nonparametric. The non-parametric models often do matching from a database of existing images, often matching 

patches of images, and have been used in texture synthesis, super-resolution and in-painting. Parametric models for 

generating images has been explored extensively (for example on MNIST digits or for texture synthesis). However, 

generating natural images of the real world have had not much success until recently. A variational sampling 

approach to generating images has had some success, but the samples often suffer from being blurry. Another 

approach generates images using an iterative forward diffusion process . Generative Adversarial Network generated 

images suffering from being noisy and incomprehensible. A laplacian pyramid extension to this approach showed 

higher quality images, but they still suffered from the objects looking wobbly because of noise introduced in 

chaining multiple models. A recurrent network approach and a deconvolution network approach have also recently 

had some success with generating natural images. However, they have not leveraged the generators for supervised 

tasks.  

Visualizingthe Internals of CNNs: One constant criticism of using neural networks has been that they are black-

box methods, with little understanding of what the networks do in the form of a simple human-consumable 

algorithm. In the context of CNNs, Zeiler et. al. showed that by using deconvolutions and filtering the maximal 

activations, one can find the approximate purpose of each convolution filter in the network. 

 

IV. Approach and Model Architechure 
Historical attempts to scale up GANs using CNNs to model images have been unsuccessful. This motivated 

the authors of LAPGAN (Denton et al., 2015) to develop an alternative approach to iteratively upscale low 

resolution generated images which can be modeled more reliably. We also encountered difficulties attempting to 

scale GANs using CNN architectures commonly used in the supervised literature. However, after extensive model 

exploration we identified a family of architectures that resulted in stable training across a range of datasets and 

allowed for training higher resolution and deeper generative models.  

Core to our approach is adopting and modifying three recently demonstrated changes to CNN architectures.  

The first is the all-convolutional net (Springenberg et al., 2014) which replaces deterministic spatial 

pooling functions (such as maxpooling) with strided convolutions, allowing the network to learn its own spatial 

down sampling. We use this approach in our generator, allowing it to learn its own spatial up sampling, and 

discriminator.  

Second is the trend towards eliminating fully connected layers on top of convolutional features. The 

strongest example of this is global average pooling which has been utilized in state of the art image classification 

models (Mordvintsev et al.). We found global average pooling increased model stability but hurt convergence speed. 

A middle ground of directly connecting the highest convolutional features to the input and output respectively of the 

generator and discriminator worked well. The first layer of the GAN, which takes a uniform noise distribution Z as 

input, could be called fully connected as it is just a matrix multiplication, but the result is reshaped into a 4-

dimensional tensor and used as the start of the convolution stack. For the discriminator, the last convolution layer is 

flattened and then fed into a single sigmoid output. See Fig. 1 for a visualization of an example model architecture.  

Third is Batch Normalization (Ioffe&Szegedy, 2015) which stabilizes learning by normalizing the input to 

each unit to have zero mean and unit variance. This helps deal with training problems that arise due to poor 

initialization and helps gradient flow in deeper models. This proved critical to get deep generators to begin learning, 

preventing the generator from collapsing all samples to a single point which is a common failure mode observed in 

GANs. Directly applying batchnorm to all layers however, resulted in sample oscillation and model instability. This 

was avoided by not applying batchnorm to the generator output layer and the discriminator input layer.  

The ReLU activation (Nair & Hinton, 2010) is used in the generator with the exception of the output layer 

which uses the Tanh function. We observed that using a bounded activation allowed the model to learn more quickly 

to saturate and cover the color space of the training distribution. Within the discriminator we found the leaky 

rectified activation (Maas et al., 2013) (Xu et al., 2015) to work well, especially for higher resolution modeling. This 

is in contrast to the original GAN paper, which used the maxout activation (Goodfellow et al., 2013).  

Architecture guidelines for stable Deep Convolutional GANs  

 



Deep Convolutional Generative Adversial Network on MNIST Dataset 

                                                                            172 | Page 

• Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions 

(generator).  

• Use batchnorm in both the generator and the discriminator.  

• Remove fully connected hidden layers for deeper architectures.  

• Use ReLU activation in generator for all layers except for the output, which uses Tanh.  

• Use LeakyReLU activation in the discriminator for all layers. 

 

V. Details of Adversarial Training 
We trained DCGANs on three datasets, Large-scale Scene Understanding (LSUN) (Yu et al., 2015), 

Imagenet-1k and a newly assembled Faces dataset. Details on the usage of each of these datasets are given below. 

No pre-processing was applied to training images besides scaling to the range of the tanh activation function [-1, 1]. 

All models were trained with mini-batch stochastic gradient descent (SGD) with a mini-batch size of 128. All 

weights were initialized from a zero-centered Normal distribution with standard deviation 0.02. In the LeakyReLU, 

the slope of the leak was set to 0.2 in all models. While previous GAN work has used momentum to accelerate 

training, we used the Adam optimizer (Kingma& Ba, 2014) with tuned hyperparameters. We found the suggested 

learning rate of 0.001, to be too high, using 0.0002 instead. Additionally, we found leaving the momentum term β1 

at the suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped stabilize 

training 

 
Figure no 1: DCGAN generator used for LSUN scene modeling. 

 

FACES: 

We scraped images containing human faces from random web image queries of people’s names. The 

people names were acquired from dbpedia, with a criterion that they were born in the modern era. This dataset has 

3M images from 10K people. We run an OpenCV face detector on these images, keeping the detections that are 

sufficiently high resolution, which gives us approximately 350,000 face boxes. We use these face boxes for training. 

No data augmentation was applied to the images. 

 
Figure no 2: Generated bedrooms after one training pass through the dataset. 
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Theoretically, the model could learn to memorize training examples, but this is experimentally unlikely as 

we train with a small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating 

memorization with SGD and a small learning rate. 

 
Figure no 3: Generated images after five epochs of training. 

 

VI. Methodology of DCGAN on MNIST Dataset 
Datasets: 

1. MNIST dataset is a curated list of all handwritten digits. We have used dataset for quick validation of our 

model. All images are scaled to 28X28.  

2. The CelebA dataset consists of over 10k identities and 200k total images. All images are originally of 

size 160X160 pixels. They are rescaled to 28X28 pixels. 

 
Figure no 4: MNIST Dataset 

 

VII. Empirical validation of DCGANS Capabilities 
Classifying MNIST using GANS as a Feature Extractor: One common technique for evaluating the quality of 

unsupervised representation learning algorithms is to apply them as a feature extractor on supervised datasets and 

evaluate the performance of linear models fitted on top of these features. On the MNIST dataset, a very strong 

baseline performance has been demonstrated from a well tuned single layer feature extraction pipeline utilizing K-

means as a feature learning algorithm. When using a very large amount of feature maps (4800) this technique 

achieves 80.6% accuracy. An unsupervised multi-layered extension of the base algorithm reaches 82.0% accuracy 

(Coates & Ng, 2011). To evaluate the quality of the representations learned by DCGANs for supervised tasks, we 

train on Imagenet-1k and then use the discriminator’s convolutional features from all layers, maxpooling each layers 

representation to produce a 4 × 4 spatial grid. These features are then flattened and concatenated to form a 28672 

dimensional vector and a regularized linear L2-SVM classifier is trained on top of them. This achieves 82.8% 

accuracy, outperforming all K-means based approaches. Notably, the discriminator has many less feature maps (512 
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in the highest layer) compared to K-means based techniques, but does result in a larger total feature vector size due 

to the many layers of 4 × 4 spatial locations. The performance of DCGANs is still less than that of Exemplar CNNs 

(Dosovitskiy et al., 2015), a technique which trains normal discriminative CNNs in an unsupervised fashion to 

differentiate between specifically chosen, aggressively augmented, exemplar samples from the source dataset. 

Further improvements could be made by finetuning the discriminator’s representations, but we leave this for future 

work. Additionally, since our DCGAN was never trained on CIFAR-10 this experiment also demonstrates the 

domain robustness of the learned features. 

 

Table no 1: MNIST classification results using our pre-trained model. Our DCGAN is not pretrained on MNIST, 

but on Imagenet-1k, and the features are used to classify MNIST images 

 
 

Classifying Svhn Digits using Gans as a Feature Extractor:  

On the Street View House Numbers dataset (SVHN)(Netzer et al., 2011), we use the features of the 

discriminator of a DCGAN for supervised purposes when labeled data is scarce. Following similar dataset 

preparation rules as in the CIFAR-10 experiments, we split off a validation set of 10,000 examples from the non-

extra set and use it for all hyperparameter and model selection. 1000 uniformly class distributed training examples 

are randomly selected and used to train a regularized linear L2-SVM classifier on top of the same feature extraction 

pipeline used for CIFAR-10.  

This achieves state of the art (for classification using 1000 labels) at 22.48% test error, improving upon 

another modification of CNNs designed to leverage unlabeled data (Zhao et al., 2015). Additionally, we validate that 

the CNN architecture used in DCGAN is not the key contributing factor of the model’s performance by training a 

purely supervised CNN with the same architecture on the same data and optimizing this model via random search 

over 64 hyperparameter trials (Bergstra&Bengio, 2012). It achieves a significantly higher 28.87% validation error. 

 

VIII. Investigating and Visualizing the Internals of the Networks 
We investigate the trained generators and discriminators in a variety of ways. We do not do any kind of 

nearest neighbor search on the training set. Nearest neighbors in pixel or feature space are trivially fooled by small 

image transforms. We also do not use log-likelihood metrics to quantitatively assess the model, as it is a poor  

metric.  

 

Table no 2: SVHN classification with 1000 labels 
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Walking in the Latent Space: The first experiment we did was to understand the landscape of the latent space. 

Walking on the manifold that is learnt can usually tell us about signs of memorization (if there are sharp transitions) 

and about the way in which the space is hierarchically collapsed. If walking in this latent space results in semantic 

changes to the image generations (such as objects being added and removed), we can reason that the model has 

learned relevant and interesting representations. The results are shown in Fig.  

Visualizing the Discriminator Features: Previous work has demonstrated that supervised training of CNNs on 

large image datasets results in very powerful learned features (Zeiler& Fergus, 2014). Additionally, supervised 

CNNs trained on scene classification learn object detectors (Oquab et al., 2014). We demonstrate that an 

unsupervised DCGAN trained on a large image dataset can also learn a hierarchy of features that are interesting. 

Using guided backpropagation as proposed by (Springenberg et al., 2014), we show in Fig.5 that the features learnt 

by the discriminator activate on typical parts of a bedroom, like beds and windows. For comparison, in the same 

figure, we give a baseline for randomly initialized features that are not activated on anything that is semantically 

relevant or interesting. 

 

IX. EVALUATING DCGANS CAPABILITY TO CAPTURE DATA DISTRIBUTIONS 
We propose to apply standard classification metrics to a conditional version of our model, evaluating the 

conditional distributions learned. We trained a DCGAN on MNIST (splitting off a 10K validation set) as well as a 

permutation invariant GAN baseline and evaluated the models using a nearest neighbor classifier comparing real 

data to a set of generated conditional samples. We found that removing the scale and bias parameters from 

batchnorm produced better results for both models. We speculate that the noise introduced by batchnorm helps the 

generative models to better explore and generate from the underlying data distribution. The results are shown in 

Table 3 which compares our models with other techniques.  

The DCGAN model achieves the same test error as a nearest neighbor classifier fitted on the training 

dataset - suggesting the DCGAN model has done a superb job at modeling the conditional distributions of this 

dataset. At one million samples per class, the DCGAN model outperforms InfiMNIST a hand developed data 

augmentation pipeline which uses translations and elastic deformations of training examples. The DCGAN is 

competitive with a probabilistic generative data augmentation technique utilizing learned per class transformations 

(Hauberg et al., 2015) while being more general as it directly models the data instead of transformations of the data. 

 

Table no 3: Nearest neighbor classification results. 

 
 

 
Figure no 5: Illustrations of MNIST dataset 
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X. Result 
The digits produced image for MNIST dataset were: 

 
Figure no 6: Images generated 

 

Image generated from our GAN Model.  

(A) generated 8.  

(B) generated 7( inverted 7).  

 

Loss in Training: 

 
Figure no 7: Discrimonator and Generator loss 

 

XI. Conclusion 

Sampling from a latent space of images to create entirely new images or edit existing ones is currently the most 

popular and successful application of creative AI . In this paper, we demonstrated a way to generate images from 

training the existing similar images. GAN is a dynamic system where the optimization process is seeking not a 

minimum, but an equilibrium between two forces. It was difficult to train the generated image and they were not as 

good as the real image. Hence we had to use a pre-trained model for MNIST Dataset.  

This work propose a more stable set of architectures for training generative adversarial networks and will 

give evidence that adversarial networks learn good representations of images for supervised learning and generative 

modeling. There are still some forms of model instability remaining noticed as models are trained longer they 

sometimes collapse a subset of filters to a single oscillating mode. Further work is needed to tackle this from of 

instability.  

We think that extending this framework to other domains such as video (for frame prediction) and audio 

(pre-trained features for speech synthesis) should be very interesting. Further investigations into the properties of the 

learnt latent space would be interesting as well. 
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