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ABSRACT; 

Power efficiency and real-time processing capability are two major issues in today‘s mobile video applications. We proposed a novel Motion Estimation (ME) engine 

for power-efficient real-time MPEG- 4 video coding based on our previously proposed content-based ME al- gorithm [8], [13]. By adopting Full Search (FS) and Three 

Step Search (TSS) alternatively according to the nature of video contents, this algo- rithm keeps the visual quality very close to that of FS with only 3% of its 

computational power. We designed a flexible Block Matching (BM) Unit with 16-PE SIMD data path so that the adaptive ME can be performed at a much lower clock 

frequency and hardware cost as compared with previous FS based work. To reduce the energy cost caused by excessive external memory access, on-chip SRAM is also 

utilized and optimized for paral- lel processing in the BM Unit. The ME engine is fabricated with TSMC 

0.18 µm technology. When processing QCIF (15 fps) video, the estimated power is 2.88 mW@4.16 MHz (supply voltage: 1.62 V). It is believed to be a favorable 

contribution to the video encoder LSI design for mobile appli- cations. 

 

key words: content-based, motion estimation, power-eflcient, real-time, MPEG-4 

Introduction 

 
Motion Estimation (ME) is supposed to consume as much as 70% of the total computational power of an encoder [1]. Many fast 

algorithms have been developed to realize dras- tic speedup over FS such as Three Step Search (TSS) [2], Four Step Search 

(FSS) [3] and Diamond Search (DS) [4], etc. However, most of them are not suitable for hardware implementation due to the 

following two facts: 1) Many fast algorithms require irregular memory access, which is not fa- vorable for hardware implementation. 

2) A single algorithm cannot guarantee good visual quality for various kinds of video. 

Adaptive algorithms like PMVFAST [5] and ASDS [6] emerged with an object to maximize the speed up over FS while 

minimizing the visual quality loss.   This is gener- ally realized by dynamically modifying ME strategies for 
 

 

different situations. However, like in most of the fast al- gorithms, memory access irregularity persists and the the- oretical 

speedup often fails to guarantee high efficiency in hardware. In addition, the sophisticated decision making mechanisms in 

those adaptive algorithms often involve com- plicated mathematical analysis, which can become cumber- some overhead. This 

is another tough problem on the way to successful hardware implementation as few examples have ever been observed except 

for [7]. 

So far, FS is still dominant in hardware design. Various kinds of parallel architecture are utilized for high efficiency while 

the drawbacks of huge power consumption and large circuit size are inevitable. Hence when it comes to applica- tions like 

mobile visual communication, FS will no longer be ideal. New efficient algorithms with high accuracy along and practical 

hardware architecture will be highly necessary. In Sect. 2, we will briefly review one of our previous work, a content-based 

ME algorithm [8], [13], which ap- proximates FS with satisfactory accuracy, reducing the com- putation burden to only 3% to 

4% of that of FS. It is the 

target algorithm of our ME hardware design. 

Then in Sect. 3, we will describe the hardware archi- tecture design of the proposed ME engine. We use a Hierar- chical 

Finite State Machine (HFSM) based Control Unit is designed to perform video contents analysis and execution control. We 

also designed a Flexible Block Matching Unit (BM Unit) so that the adaptive ME can be performed at a much lower clock 
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frequency and hardware cost as compared with previous FS based work. To reduce the power caused by excessive external 

memory access, on-chip SRAM is also utilized and optimized for parallel processing with the 16- PE SIMD datapath in the 

BM Unit. 

Section 4 is an evaluation report of the VLSI im- plementation. The ME engine is fabricated with TSMC 

0.18 µm technology, taking up roughly 19.6 k gates as well as 6 k-bit SRAM. When processing QCIF (15 fps) video, the 

estimated power is 2.88 mW@4.16 MHz (supply volt- age: 1.62 V). Section 5 concludes this paper. 

 

The Algorithm 

 
 The Content-Based Motion Estimation Algorithm 

 
In our previous work [8], we proposed a new adaptive ME algorithm where FS with Adaptive Search Window (ASW) and 

TSS will be employed alternatively on macro block 
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Table 1 Motion type decision. 
 

T-1  T Motion Type 

Low → Low 
CHAOS 

High → Low 

Low → High CRITICAL 

High → High SIMPLE 

 
 

video sequences are used and all the possible values of T h1 

and T h2 are tried. Finally the threshold values are decided 

as a compromise between matching accuracy and compu- 

tational complexity, as mentioned in [8], [13]. If either of 

δT−1 and δT appears to be under the threshold the coherence 
of MVs in the corresponding context is classified as ―High,‖ 

otherwise ―Low.‖ In our algorithm, 

δ = Max(ǁ
−
V
→∗  

− 
−
V
→∗ 

ǁ)  (k = 1, 2, 3, ..., 8) (1) 
T −1 k 9 3 

Fig. 1 Flow of the revised algorithm. 

 

 

−
V
→

0  = (0, 0) 

V
−→

1  = Median(V
−→

1 , 
−
V
→

2, 
−
V
→

3 ) 

−
V
→

2  = −V→9

∗ 

, −V→3  = Median(
−
V
→

5 

∗ 

, V−→7

∗ 

, V−→8

∗ 

) 

Fig. 2 Context for MV distribution analysis. 

 

 
(MB) level according to different video contents. The dis- tinction of video contents is done by classifying the motion of each MB 

into several types according to the motion vector (MV) distribution within its neighborhood. Figure 1 shows the flow chart of the 

algorithm. 

As illustrated in Fig. 2, Context T-1 is defined in the 
reference frame and Context T in the current frame. 

First, up to four initial search centers are predicted. (
−
V
→

k 
∗ 

and Vk stand for MVs in the two contexts, while Vk denotes 

the initial search center candidates.) Initial search (only check the predicted initial search center candidates) will find the one with 

minimum matching distortion and make it the search center. 

Then motion typing starts from the analysis on the spa- tial correlation between the MVs in the same context. Two quantitive 

indicators δT−1 and δT are used to describe the discrepancy of MVs in Context T-1 and Context T respec- tively (see (1) and (2)) 

while two thresholds, T h1 and T h2 are introduced for δT−1 and δT respectively. The thresh- old values are obtained from 
experiments where a series of 

 ̃

 ̃
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ǁ·  ǁ 

δT  = 
  

ǁ
−
V
→

k  − 
−̃
V
→

1ǁ (k = 1, 2, 3) (2) 
 

: sum of the absolute differences of both x and y compo- nents of two vectors 

 

Then the motion type will be decided via temporal cor- relation analysis between the two consecutive frames, which is 

shown in Table 1. 

According to each of the motion types, the ME algo- rithm will be dynamically specified. In the case of ―SIM- PLE,‖ 

FS tends to obtain an optimum of initial search cen- ter with extremely small search range, while in the case of ―CHAOS,‖ 

TSS with large search range will be used to han- dle fast motion with higher efficiency than FS. 

The reason why FS and TSS are adopted is given here. As mentioned earlier, fast algorithms always fail to see suc- 

cessful hardware implementation due to the irregular search pattern and consequential irregular memory access. Adap- tive 

algorithms seem to be more impractical because the multiple search patterns indicate redundant circuit when only one 

pattern is used at a time. 

However, it is observed that FS and TSS can be exe- cuted in a similar manner except that: 

1. the step sizes of scan in horizontal and vertical direc- tions are different (FS scans each search position with a step size 

of one pixel) 

2. the numbers of iterations are different (TSS will work until the step size is reduced to 1) 

3. the search window are different (In each iteration, TSS will update its search window, which is decided by the search 

center, search range and the position of the MB) 

Hence it is natural to merge the initial search (only check the predicted initial search center candidates), FS and TSS into 

a configurable block matching process as described in Fig. 1. 

 

 Simulation and Evaluation 

 

We implemented the proposed algorithm in C language and 

 

  
Fig. 3 A contrast of computational burden. 

 
 

evaluated its performance in terms of Average Number of Check Points (ACP) per MB and Mean Square Error (MSE). We used 

such test sequences as follows: 

• Akiyo (QCIF, 15 fps, 150 frames) 

• Miss America (QCIF, 15 fps, 150 frames) 

• Carphone (QCIF, 15 fps, 150 frames) 

• Foreman (QCIF, 15 fps, 150 frames) 

• Stefan (CIF, 30 fps, 150 frames) 

• Mobile (CIF, 30 fps, 300 frames) 

which are examples from simple contents to complicated contents that contain fast and detailed motion. 

ACP is an indicator of computational complexity. As explained in [8], [13], in our algorithm the ACP is a function of the 
Nsimple, Ncritical and Nchaos, i.e. the search ranges of ―SIMPLE,‖ ―CRITICAL‖ and ―CHAOS‖ contents. A theo- retical worst case of 

ACP is (2Ncritical +1)
2
 +δ per MB where δ denotes the extra check points caused by initial search. With Ncritical = 4 and δ less than 4, 

ACP can be as many as 81 to 84. Although it hardly ever occurs as our experiments suggested, the architecture design and clock 

i=1 

http://www.jst.org.in/


Journal of Science and Technology 

ISSN: 2456-5660 Volume 7, Issue 09 ( November 2022) 

www.jst.org.in                                                                          DOI:https://doi.org/10.46243/jst.2022.v7.i09.pp199 - 211  

Published by: Longman Publishers www.jst.org.in 

 

Page | 5  

 

       1  
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M × N 
i j  

frequency deci- sion were based on the worst case computational complexity to ensure its real-time processing capability under 

various conditions. As illustrated in Fig. 3, although DS seems to be more efficient, its complicated search pattern causes great 

difficulty in hardware implementation while our FS + TSS based algorithm is free of such worries and it also demon- strated high 

efficiency as it constantly reduced the ACP to 3% to 4% of that of FS. 

MSE describes the distortion of block matching. It is defined as (3), where M and N stand for the width and height of a frame 

in pixel, and Cij, Ci
∗

jindicate the pixel in current 

frame and its match in the reference frame. 

N−1 M−1 

MS E = (Cij − C∗ ) (3) 

Fig. 4 A contrast of visual quality. 

 
 

involved, our algorithm can always remain the closest ap- proximation of FS in terms of block matching accuracy. 

 

1. Hardware Architecture Design 

 

With applications like mobile visual communication, the conflicting matters like real-time encoding capability and power-

efficiency are considered key issues. 

As we know, the power consumption of a LSI can be expressed by a function of operation voltage (V), circuit ca- pacity 

(C) and operation frequency ( f ). Normally higher V, f and bigger circuit size will lead to higher power con- sumption. 

When traditional algorithms like FS is adopted, the circuit size tends to be very large, and we will have to raise the V and f 

otherwise we cannot afford the heavy com- putation burden for real-time processing. In [9], methods to map ME algorithms 

into multiple Processing Elements (PE) are described, and in [10] and [11], a more powerful frame- level pipeline scheme is 

introduced which further increases the data-reuse, minimizing external memory access. How- ever, mapping FS to a systolic 

PE array is not an easy task, and the number of PEs is often to the 2nd order of the search range. As each PE consists of not only 

an ALU, but also reg- isters for pixel storage, the circuit size can be considerably large. 

Moreover, due to the extremely huge data throughput required to meet the real-time processing requirements, we have 

to either spend a lot of clock cycles in data input with a limited external memory bandwidth or reduce the clock cycles by 

expanding the bandwidth, yet both ways lead to increased power consumption. 

With the recent development of IC technology, it is get- ting more and more popular to implement local memory for data-

reuse inside a computation-intensive hardware device like ME engine since it can help to minimize external mem- ory access 

at a much smaller hardware cost than previous 
Lower MSE indicates higher matching accuracy and higher visual quality. 

High efficiency always comes at a loss of matching ac- curacy. However, as shown in Fig. 4, for video sequences with various 

kinds of contents, even the typical sports video sequence Stefan, where complicated body movements are 

Hence in the architecture design of our ME engine, we sought such an approach as outlined below. 

Hierarchical Finite State Machine (HFSM) for the original video contents analysis and adaptive block matching 

control. 

Since those processes are also considered overhead in- 

 
 

 
 

 

 

 
 

 
 

Fig. 5 Block diagram of proposed ME engine. 

Fig. 6 Timing chart of the ME engine. 

• 

approaches. 
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troduced by the algorithm, our aim was to minimize it in terms of both clock cycles and circuit size. 

On-chip SRAM for pixel reuse. 

It supports concurrent access to 16 pairs of pixels for SAD calculation, and the pixel reuse will help greatly reduce the 

external memory access as well as the re- lated power consumption. 

16-PE SIMD Block Matching Unit (BM Unit) with configurable parameters for FS and TSS. 

The proposed algorithm helped to greatly reduce the circuit scale of BM, and we adopted SIMD for parallel processing to 

further lower the clock frequency. The configurability for both FS and TSS will help avoid re- dundancy by circuit reuse. 

The block diagram of the ME engine show in in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 
 

 

 

 

 

Fig. 7 HFSM in control unit. 

It will be driven by a RISC processor through a 20-bit instruction bus, and the instructions will pass information to the ME 

engine such as frame size, frame index, block index and so on. The SRAM A and SRAM B are considered ex- ternal storage for 

pixels and MVs, since our algorithm also utilizes the MVs of previously processed MBs. They are connected with the ME 

Engine via a 16-bit bus, and thus during one read cycle, 2 pixels or 1 MV can be read into the ME engine (8 bits for each pixel or 

one component of a MV). 

It should be noted that we might as well have pixel stor- age or external memory bus of other configurations as long as 

available. Naturally, varying the condition will have sig- nificant impact upon the design and the performance. 

 

 Hierarchical Finite State Machine (HFSM) 

 

The execution control of our ME engine is realized via a HFSM as shown in Fig. 6, which depicts an example when we happen to 

have adopted TSS for the adaptive block matching of a MB. 

Level 0 is the top level FSM, and we can see the TSS is finished within four iterations (denoted by ―ME,‖ with step sizes of 8, 

4, 2 and 1) while ―INIT‖ is a stage for initializa- tion, which is a unique process introduced by the proposed 

Level 1 is a sub-FSM for ―INIT,‖ inside which Con- text Update (―CONTEXT‖), MV Prediction (―MVP.‖), Motion 

Typing (―M.T.‖) and Search Window Definition (―S.W.DEF.‖) are included (see Fig. 1). The ―S.W. DEF.‖ will be performed 

before each of the four iterations to up- date the search range and search center. 

Both Level 0 and Level 1 are implemented in the ―Con- trol Unit‖ of the ME engine, which is further described be- low. 

As shown in Fig. 7, the ―FSM:Level1‖ is triggered by the ―FSM:Level0‖ and it will first update the contexts for video 

contents analysis. In order to reduce the external memory access for old MVs, we devised a register file for the 12 MVs of 

both contexts as we found that the raster 

scan mode makes part of the MVs in both contexts reusable. Hence each register of MVs,  e.g. C1  or C
∗ 
,  can either be 

updated with shift-in values or MVs from external SRAM. 

In the ―Update Control‖ in the ―CONTEXT,‖ a look-up ta- ble of ―update codes‖ is prepared which decides the manner of 

update according to the position of the current MB with a simple decoding logic. It will guide a small FSM in the ―Update 

Control‖ to scan and update all the MVs within 16 cycles, with a minor overhead. 

In Fig. 8, a detailed picture of ―MVP. & M.T.‖ is given. In fact, Fig. 6 also tells us that this process is executed 

• 

• 
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Fig. 8 MVP. and M.T. 

 

 

concurrently with ―INIT SEARCH‖ to save clock cycles. Therefore we adopted a sequential style to save hardware by circuit 

reuse. The ―MVP MT Seq‖ is a sequencer that is driven by a counter which sees that the whole process is fin- ished in a sequential 

manner within 13 cycles. There is only one ―median calc‖ to calculate the median value of three input MVs, and one ―abs diff 
calc‖ for the absolute differ- ence which is needed in ―M.T.‖ There is a register ―Dt-1/Dt‖ 

which is shared by δT−1 and δT . They are decided in two 
consecutive cycles and finally the motion type is decided. 

Level 2 is a sub-FSM for adaptive BM, including ini- tial search, FS, and TSS. It is implanted in the ―B.M. Ctrl‖ module of 

―BM Unit‖ (see Fig. 5) which is described later. 

 

 On-Chip SRAM 

 

We have a Current Block Buffer (CB) (―C. Buff.‖ as shown in Fig. 5) that consists of 16 pieces of 8 bits 16 words SRAM, and a 

Reference Area Buffer (RB) (‗Ref. Buff.‘ as shown in Fig. 5) that consists of 16 pieces of 8 bits 32 words SRAM. 

The pixels of the current block will be loaded into the CB during the first initial search and will be reused. One row of pixels 

in a MB (8 bits for each pixel) can be accessed within one clock cycle. 

http://www.jst.org.in/
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× 

The mapping of RB is shown in Fig. 9. and Fig. 10. We adopt a 2-D Modular Addressing Scheme here and a maxi- mum 

search window of 32 32 pixels can be dynamically accommodated in the RB. Fig. 9 Search window and reference area buffer. 

 
 

Fig. 10 Reference area buffer mapping. 

 

 

 
 BM Unit 

 

Now that we know the only difference between FS and TSS is step size in the scanning of search positions in both hor- 

izontal and vertical direction and the number of iterations, both algorithms can be realized with the same hardware ar- 

chitecture only by varying variables such as current block position, search center, size of reference area, and step size, etc. 

Figure 11 depicts the architecture design of the BM Unit, in which the Level 2 FSM is nested, as the execution 

controller with those configurable parameters listed above. It will first load the current block and reference area pixels (―LD 

CURR‖ and ―LD REF‖ as shown in Fig. 6) as long as necessary, with the ―Ext. A.G. II‖ generating addresses of pixels in the 

external SRAMs, and the ―Int. A.G.‖ generat- ing address for the on-chip SRAMs. In the address genera- tors, multipliers 

are absent since the calculation of address is simplified and can be done with only addition and shifting. 

It should be noted that the addresses here stands for a kind of address code, which will be decoded in the Exter- nal 

Memory Interface (Ext. Mem. I/F) or the Local Memory 
 

 

Fig. 11 Architecture view of the BM unit. 

 
 

Interface (Loc. Mem. I/F). In the External Memory Inter- face, we prepared look-up tables for the generation of true addresses, 

in order to avoid complicated calculation and re- duce the circuit size. 

During ―BM‖ (also see Fig. 6), the BM Unit will try to search all the points in the part of search window that is cur- rently in the 

RB, with specified step sizes (FS: 1; and TSS: 8, 4, 2 or 1). Again, ―Int.   A.G.‖ will generate addresses of pixels in both CB and 

RB. As illustrated in Fig. 10, the 16 pixels read from RB may not be in the natural order as search positions vary in the horizontal 

http://www.jst.org.in/
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− 

direction, and we de- vised a rotator inside the Loc. Mem. I/F which will re-order the reference pixels. 

We are using the 16-PE SIMD architecture with Adder Tree (AT) for the calculation of SAD and decision of MV. Compared 

with intensive systolic PE-array based previous work, the design is greatly simplified as we cancelled the distributed register-

based pixel storage and complicated data path. Since we can access one row of pixels from both cur- rent block and the reference 

block from local memory, we can find the SAD of one position within 16 clock cycles. 

 

 Evaluation 

 

As mentioned earlier, a FS based approach may guarantee best visual quality but generally requires huge hardware and high clock 

frequency. For example, [10] and [11] use 256 and 1089 PEs respectively, which makes it difficult to avoid high power cost.As for 

hardware implementation of fast al- gorithms, we noticed a most recent work where a 4-way pipelined architecture for TSS was 

proposed [12]. Table 2 is a brief contrast between this approach and ours. 

[12] devised four parallel pipelines to perform TSS concurrently and thus a 64-bit input port is needed to feed four pairs 

of current/reference pixels from the exter- nal SRAM. To handle the 4-way parallel processing, each PE is actually an 

equivalence of 4 PEs used in our design. Table 2 Contrast between 4-way TSS and our approach. 
 

 Input 
port 

PE # Cycle # Search 
range 

On-chip 
SRAM 

[12] 64b 9 337 [−7,+7] 0 

Proposed 
16b 16 432 [−7,+7] 

6 kbit 
  576 [−15,+15] 

 

Table 3 Summary of VLSI implementation. 
 

Technology TSMC 0.18 µm 

Core size 1.99 mm × 1.99 mm 

No. pins 73(without Power and Ground) 

Gate count 19.6 k 

SRAM 
CB: 2 k-bit (8 bits × 16 words × 16 pcs) 

RB: 4 k-bit (8 bits × 32 words × 16 pcs) 

Clock 

frequency 

QCIF(15 fps): ≥ 4.16 MHz 

CIF(30 fps): ≥ 33.3 MHz 

Supply 

voltage 
1.6v 

 
 

We should note that the overhead of data loading is excluded from the estimated cycle numbers here. Although their de- sign 

does not include on-chip SRAM, the data partitioning of the frames, which is a crucial point in their method and may as 

well require some pixel buffers, is not considered in the total cycle number estimation. In addition, Our BM Unit caconfigured 

to perform TSS with a maximum search range of [ 15, +15], which is more practical in case of fast motion. 

 
2. VLSI Implementation 

 

 VLSI Implementation Result 

 

Our ME engine is implemented with TSMC 0.18 µm 6- metal CMOS technology. Table 3 is a summary of the VLSI 

implementation result. Since our target is low power mo- bile applications, the clock frequency is a very crucial issue. 

According to our calculation, in the worst case mentioned earlier in Sect. 2.2, the required clock cycle number is 2342 per MB. 

While in another case when only TSS is used, it becomes 2524 per MB due to more complicated data prepa- ration. Hence, 

the minimum clock frequency of 4.16 MHz for QCIF and 33.3 MHz for CIF will be adequate for all the cases. Figure 12 is a 

photograph of the chip. 

 
 Evaluation 

 

In Fig. 13, a contrast of circuit scale in terms of gate count between all the major modules in the ME engine is given as well as 

their shares of the estimated total power consump- tion. It shows that the on-chip SRAM takes up about 83% of the total 

area, which is equivalent to 80 k gates. 

The ―Ctrl Unit,‖ which contains some special circuits for the overhead process introduced by our algorithm, takes up 7 k 

gates, roughly the same with the 16-PE SIMD ―BM Unit.‖ Based on the analysis in Sect. 3, we can say that even with the 

http://www.jst.org.in/
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hardware overhead introduced by our adaptive al- gorithm, the proposed ME engine is still superior to previ- 

ous FS and TSS based works in terms of circuit size, for the same performance. 

We also performed power consumption estimation with Synopsys‘s Power Compiler. The results shows the aver- age power 

consumption can be as low as 2.88 mW when our ME engine is working with a 1.6 V supply voltage, process- ing QCIF (15 fps) 

video sequences at 4.16 MHz. For CIF (30 fps) video, the minimum average power consumption is 

 
 

Fig. 12 A photograph of the chip. 

 
 

Fig. 13 Contrast of area/power consumption between major modules. 

19.50 mW at 33.3 MHz. 

As indicated by Fig. 13, on-chip SRAMs take up over 85% of the total power, of which ―Ctrl Unit‖ and ―BM Unit‖ only 

account for a minor portion. It should be noted that im- provements on the on-chip SRAM design will have great impact on 

the overall power consumption. For example, since our design will generally operate at a very low fre- quency, some 

customized SRAM with much lowered I/O drive than normal SRAMs will help significantly reduce the power consumption. 

Increasing the external SRAM bus may also help to decrease the clock frequency, as another ap- proach of low power design. 

Table 4 is a comparison between some related works done in recent years and ours. [14], [16] and [17] are FS based 

design. They have made an effort to enhance the flex- ibility but it is restricted to search range modification and initial motion 

vector prediction. [15] is a processor-based design which provides far better flexibility and it adopts fast algorithms to reduce 

the computational complexity and as a consequence, reduce the hardware cost. 

As indicated by the comparison result, our design ap- pears to be more suitable for mobile applications as it suc- 

cessfully achieved flexible block matching with FS and TSS at far reduced hardware/energy cost. 

 

3. Conclusions 

 
We designed a content-based ME Engine based on our origi- nal adaptable ME algorithm. Simulations confirmed that the 

proposed algorithm can constantly reduce the computation burden to about 3% to 4% of that of FS with satisfactory vi- sual 
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quality compared with some other fast algorithms for a series of video sequences. 

In the hardware architecture design, the Control Unit is designed based on a HFSM, with minimized hardware cost and 

an overhead of about 16 cycles for context update only. We introduced on-chip SRAMs for pixel data reuse, and the external 

memory access is successfully reduced. The BM Unit with configurable parameters can realize both FS and TSS with its 

flexible 16-PE SIMD architecture. 

As the VLSI implementation results shows, the pro- 
 

Table 4 VLSI implementation results comparison. 
 

comparison [14](CIF-ASIC) [15] [16] [17] Ours 

Algorithm 
FS programmable 

Predictive DS 

FS FS FS/TSS, dynamically 
configurable 

Process/FPGA 

model 
0.25 µm 

2.5v 
0.18 µm 

1.8v 

Xlinx SpartanII 

XC2S50 
0.25 µm 0.18 µm 

1.6v 

Gate count/ 

Chip area 

29 k 62 k 10 k 3.19 × 3.19 mm2 19.6 k 

1.99 × 1.99 mm2 

On-chip 

memory 

9 kbit 

DPRAM 

35 kbit ROM 

+3.4M SRAM 

10.7 kbit 29.78 kbit 6 kbit 

SRAM 

Clock 

frequency 

18 MHz (QCIF) 67 MHz 8.2 MHz(QCIF) 

49 MHz(CIF) 

100 MHz 4.16 MHz 

33 MHz(CIF) 

 

Performance 

QCIF/CIF, with 
search range 

[−16,+15] 

 

— 
QCIF/CIF, with 

search range 

[−7,+8] 

720 × 576, with 
search range 

[−16,+15] 

QCIF/CIF, with 
search range 

[−15,+15] 

Power 
42 mW(QCIF) 

170 mW(CIF) 

452 mW 36.79 mW(QCIF) 

168.62 mW(CIF) 

939 mW 2.88 mW(QCIF) 

posed ME Engine can operate at 4.16 MHz for QCIF (15 fps) and 33.3 MHz for CIF (30 fps) real-time encoding at a much more 

reduced hardware cost of 19.4 k gates and 6 k-bit on-chip SRAM (with TSMC 0.18 µm technology), compared with some previous 

work. The minimum power consumption for QCIF is as low as 2.88 mW, and is thusly considered a favorable contribution to the real-

time video MPEG-4 encoder LSI design for mobile applications. 
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