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Abstract: Cell formation problem consists of identifying machine groups and part families. Generalized grouping 

problem have more than one process plans and or process routes. In non-heierarchical methods all decisions are 

made simultaneously and in heierchical methods decisions are made in stages. Because of complexity of the 

generalized problem, solving large size problems using simultaneous approach becomes difficult. The grouping 

problem assumes a particular structure depending on the objectives and the constraints. The mathematical 

models of generalized grouping are found to be either NP-complete or hard to solve. Since even the relaxed 

version of grouping problem is NP-complete, it is unlikely that the optimal solution to the problem can be  

found efficiently. Genetic Algorithm is largely used for solving problems in cellular manufacturing. In this 

paper, a model is developed to solve the generalized grouping problem considering alternative process 

plans. Several design and manufacturing parameters such as production volume, process sequence, 

machine capacity, processing time, machine duplication, number of cells and cell size are considered. The 

objective function minimizes intercellular movements and number of exceptional elements. A procedure based 

on genetic algorithms to solve the problem in two phases has been demonstrated. In the first phase it finds the 

process routes and in the next it forms grouping of machines. The algorithm coded in C++ was tested on 

Windows workstation. The objective to form cells and part families was based on a double grouping (operations 

and machines). The final solution is a proposition of machine cells defining part families. The algorithm is 

really fast and allows trying different configurations for the set of data and different alternatives of the 

weights for all criteria. It can be useful in solving large size grouping problems. 
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_____________________________________________________________________________________ 

I. Introduction  
 Cellular manufacturing systems are widely accepted as one of the major applications of group technology 

in manufacturing, for improving productivity in medium volume and medium variety production systems and 

acquiring flexibility in terms of frequent product changes. Cell manufacturing problem mainly involves identifying 

part families, formation of machine cells and assignment of parts to respective cells. The major benefits are reduced 

production lead time, reduced work-in-process, reduced setup time, reduced delivery time, reduced labor, reduced 

tooling, reduced rework, improved quality and subsequently reduced costs [1]. The major aim of this part-machine 

grouping is to form perfect part groups with similar design or processing requirements so that each part family can 

be processed within a single machine cell. Over the last two decades, since the introduction of group technology in 

manufacturing, large numbers of solution procedures have emerged for grouping problems. Extensive reviews of 
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solution procedures are given [2], [3], [4]. These procedures can be divided into two categories. Methods based on 

production part characteristics such as part geometry, material, tolerance to identify part families. Methods based on 

production process, plans or routings. A process plan lists the sequence of specific machines or work centers 

corresponding to each operation of the part. The grouping problem assumes a particular structure depending on the 

objectives and the constraints. Simple grouping is to identify part families and machine cells so that each machine 

cell can process at least one part family. However this may not be true assumption and each part can have more than 

one process plans as well as operations required to make the part can be performed on alternate machines [5].  

 The grouping problem termed as generalized grouping is to select only one process route for each part and 

to identify the process route families and machine cells so that each machine cell can process at least one process 

route family. Two broad approaches of solving the grouping problems are present. In non-hierarchical approach, all 

decisions are made simultaneously and in hierarchical approach decisions are made in stages. Because of complexity 

of generalized problem, solving large size problems using simultaneous approach becomes difficult. While the 

problem solving turns out to be relatively easier with hierarchical approach, but it may lead to suboptimal solutions 

at later stage [6]. Mathematical programming approaches are applied to find optimal solutions to the problems 

related to cellular manufacturing systems. These formulations can provide optimal solutions, which can serve as 

basis to judge the goodness of industrial heuristics. Since even the relaxed version of grouping problem is NP-

complete, it is unlikely that the optimal solution to the large problem can be found efficiently [7]. Metaheuristics 

provide solutions to the problems in reasonable time.   

Genetic algorithm is extensively applied for combinatorial optimization problems. Genetic algorithm works 

with fixed number of solutions called as population and iteratively performs some steps until a pre specified 

termination condition is meeting. It evaluate each chromosome and based on its fitness populate a gene pool by 

applying reproduction, crossover and mutation operators [8].  

In this paper, a model is developed to solve the generalized grouping problem. Several design and 

manufacturing parameters such as production volume, process sequence, machine capacity, processing time, 

machine duplication, number of cells and cell size are considered. The function minimizes intercellular movements 

and number of exceptional elements. A procedure based on genetic algorithms to solve the problem in two phases 

has been demonstrated. In the first phase, it finds the process routes randomly and in the next, it forms grouping of 

machines. It iteratively solves for better solution. The final solution is a proposition of machine cells defining part 

families. The algorithm is fast and allows trying different configurations for the set of data and alternative routes.    

           

II. Prior work and studies  
Despite the vast literature available for simple grouping, the generalized grouping problem has attracted 

relatively less attention from the researches. Kusiak [1] considered the grouping problem first in which each part has 

more than one process routes. A generalized grouping problem was termed and p-median model was used. 

Minimizing sum of similarity coefficient values around median process route within the family was objective 

function. Rajamani [5] proposed general integer linear and nonlinear programming formulations. The generalized 

grouping concept was made more generalized which considered each part has more than one process plans and each 

operation of a process plan can be performed on more than one machines. Shanker and Agrawal [9] considered 

maximizing association of part operations with machines. The problems are formulated as graph partitioning models 

that determine the groups either hierarchically or simultaneously and solve the operations by assignment problem. 

Zhao and Wu [10] used a genetic algorithm to solve a multi-objective cell formulation problem. User defined 

weights are used to convert multiple objectives into a single objective. The objectives considered are total number of 

exceptional elements total within cell load variation and inter cellular movements. Gravel at el [14] used alternate 

process plans for products and proposed double loop genetic algorithm to generate an efficiency frontier cell 

formation problems with two objectives viz. minimizing intercellular transfers and intracellular load balance among 

machines. Shanker and Vrat [7] applied a fuzzy programming approach.  

Uddin and Shanker [11] have used genetic algorithm to minimize the total number of intercellular 

movement in the presence of multiple process plans for each part by simultaneous approach. Two interrelated 

problems were solved. One pertaining to the assignment of machines to cells and second to assignment of process 

plans are solved. Jaiswasl and Adil [12] used simulated annealing to minimize sum of cost of intercellular moves, 

machine investment and machine operating cost. Lei and Wu [13] considered Tabu search approach by similarity 

coefficient method and subsequently improved by Tabu search method. Most of the existing methods are integer 

programming as their optimization technique is NP-complete. Some of the models use heuristics to solve the 

problem but the drawback is that the convergence is not guaranteed towards the optimum.        
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In this paper, a model is developed to solve the cellular manufacturing problem using alternative process 

plans by two phase algorithm. As shown in Figure 1, number of part families is determined in first phase by 

assigning part routes to part families. Once the part route families are determined, machine cells are constructed.      

          Machine part process plan information 

 

 

 

 

 

 

 

 

 

 Figure 1. Two-phase algorithm 
 

 

III. Model Developed  
In this section, the notations and the mathematical model are presented.  

3.1 Notation  

Subscripts, parameters and sets 

k    part 

m     machine type 

p     process route 

c       machine cell 

C Total number of machine cells to be formed 

K Total number of parts to be manufactured 

M Total number of machines 

PR(k) Set of process routes for part k 

R(kp) Set of machine types required to process part k using process route p 

TR(kp) Total number of machine types required to process part k using process route p=|R(kp)| 

Tkpm  Time required on machine m to produce one unit of part k using process route p 

Dk Demand of part k 

Bm Time available on each machine of type m 

maxc Maximum number of machines allowed in cell c 

minc Minimum number of machines allowed in cell c 

      Decision variables  

 Ykp = 1 if process route p is selected for part k    or 0 otherwise 

 Zmc= 1 if machine m is assigned to cell c  or  0 otherwise  

 

3.2 Mathematical model 

The objective function and various constraints related to intercellular movements are presented below.   

Minimize Z = ∑ ∑𝑘
𝑘=1

𝐶
𝑐=1 ∑ Ykpc𝑛

𝑝∈𝑃𝑅(𝑘)                 (1) 

  Subject to  

  ∑ 𝑌𝑝∈𝑃𝑅(𝑘) kp =1 ,  k= 1….K         (2) 

Phase 2: Identification of machine cells 

Phase 1: Determination of part 

families and Initial route families 

(Random) 

Find the Best solution 
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  ∑ 𝑍𝑚𝑐 =𝐶
𝑐=1  1 , 𝑚 = 1 … . 𝑀                      (3) 

  ∑ 𝑍𝑀
𝑚=1 mc ≥    Min, c = 1 … . C                                                                               (4) 

  ∑ 𝑍𝑚𝑐𝑀
𝑚=1    ≤    Max, c = 1 ….C                                                                                (5) 

  𝑌𝑘𝑝 ∑ 𝑍𝑚𝑐𝑚∈𝑅(𝑘𝑝) − 𝑇𝑅(𝑘𝑝)𝑌𝑘𝑝𝑐 ≤ 0 ,   c= 1.. C, k=1.. K ,  ∀ p∈ 𝑃𝑅(𝑘)    (6)  

  ∑ ∑ 𝑑𝑘𝑌𝑘𝑝𝑇𝑘𝑝𝑚 ≤ 𝑏𝑚 ,    𝑝∈𝑃𝑅(𝑘)
𝐾
𝑘=1         m= 1 .. M                                             (7) 

                             Ykp ∈ {0,1} , k= 1.. K , ∀ p ∈ Pr(𝑘) ,                                                                      (8) 

  Ykp ∈ {0,1}, k= 1.. K , ∀ p ∈ Pr(𝑘)  ,  c= 1 .. C                                                      (9) 

                             Zmc ∈ {0,1} , m = 1 .. M , c = 1 .. C                                                                         (10) 

 

The objective function (1) minimizes the intercellular movements by minimizing the number of visits of various 

parts from one cell to another for its processing. Constraint (2) selects only one process route for each part. 

Constraint (3) ensures that each machine is assigned to only one cell. Constraint (4) and (5) express the constraints 

on the minimum and maximum number of assignments of machines to a group, respectively. With the help of 

constraint (6) variable Ykpc is defined in such a way that this constraint aids the objective function by trying to 

assign, if possible, all the machines required by a process route to the same cell. In case this is not possible, this 

constraint will try to assign, as many machines required by a process route as possible to the same cell. Constraint 

(7) ensures that the total machining time required by all the selected process routes on any machine must not exceed 

its available capacity. Constraint (6) is non-linear and can be linearized by rule suggested by Glover and Wooley 

[17]. The rule is as follows. Replace each product term Ykp, Z mc by a continuous variable Vkpmc, which is 

required to satisfy the constraints (11) to (14).   

 

 ∑ 𝑉𝑘𝑝𝑚𝑐 − 𝑇𝑅(𝑘𝑝) 𝑌𝑘𝑝𝑐 ≤ 0,𝑚∈𝑅(𝑘𝑝)          k= 1 .. K, c= 1 .. C , ∀ p∈ 𝑃𝑅(𝑘)                                  (11) 

   TR(kp) Ykp + ∑ 𝑍𝑚𝑐 − ∑ 𝑉𝑘𝑝𝑚𝑐 − 𝑇𝑅(𝑘𝑝) ≤ 0,𝑚∈𝑅(𝑘𝑝)𝑚∈𝑅(𝑘𝑝)   k= 1 .. K, c= 1 .. C , ∀ p∈ 𝑃𝑅(𝑘)          (12) 

-Ykp – Zmc  + 2 Vkpmc   ≤   0,  k= 1 .. K, c= 1 .. C , ∀ p∈ 𝑃𝑅(𝑘) ,  ∀ m∈ 𝑅(𝑘𝑝)                                            (13) 

              Vkpmc   ≥   0,  k= 1 .. K, c= 1 .. C , ∀ p∈ 𝑃𝑅(𝑘) ,  ∀ m∈ 𝑅(𝑘𝑝)                                                          (14) 

 

IV. Genetic algorithm  
In this section, we present the basis and detail the proposed genetic algorithm. The implementation of genetic 

algorithm requires an encoding mechanism to represent a solution as a chromosome. Evaluation function which will 

encoded chromosomes as an argument and return the relative fitness. A selection procedure set for reproduction. A 

cross over operator and a mutation function for bringing a variety and diversity in the population.  Given an initial 

set of process routes the problem P1 improves the solution in phase 1. The result of solving P1 is input for the 

problem P2, which is solved. At each iteration, the proposed genetic algorithm is run for a fixed number of 

generations to solve the problem P1 and P2. The basic structure of the proposed algorithm to solve problems P1 and 

P2 is as follows. 

The problem formulated in section 3 is a non-linear programming problem. There are three decision variables: 

Ykp, Ykpc and Zmc. It is evident that the values of Zmc define completely the configuration of machine cells, i.e. 

c= 1 ..C. Further, when machine cells have been formed. Ykp dictate Ykpc values as described below. If the process 

route p of part k visits any cell c for it is processing then Ykpc becomes ‘1’ or ‘0’ otherwise. Thus we decouple the 

problems P1 and P2 that are solved in succession to minimize Ykpc. Given initial set of process routes (one process 

route for each part), i.e. Ykp values, the problem become a simple grouping problem, the index p becomes constant 

(p*) for the problem P1.  

 

𝑃1: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑌(𝑘𝑝 ∗)𝑐𝐾
𝑘=1

𝐶
𝑐=1     

Subject to (3) to (5) and modified (6a)  
∑ 𝑍𝑚𝑐𝑚∈𝑅(𝑘𝑝∗) − 𝑇𝑅(𝑘𝑝 ∗)𝑌𝑘𝑝 ∗ 𝑐 ≤ 0 ,   c= 1.. C, k=1.. K ,                                   (6a)  

The result of solving P1 is a set of Zmc values. The quantity Ykpc becomes a constant for particular Ykp for 

problem P2.  

𝑃2: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑(∑ 𝑌𝑘𝑝𝑐)

𝐶

𝑐=1

𝑌𝑘𝑝

𝐾

𝑘=1

𝑃

𝑝=1

 

Subject to (2) and (7). 

The result of solving P2 is a new set of values of Ykp. The problems P1 and P2 are solved iteratively until 

convergence is achieved. Implementation of Genetic algorithm requires an encoding mechanism to represent a 
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solution as a chromosome. Evaluation functions which will take encoded chromosomes as an argument and return 

the relative fitness. A selection procedure for reproduction with two operators, i.e. crossover and mutation are 

implemented. By iterating the procedure for fixed number of cycles which fetch the best solution for the problem. 

 

V. Numerical illustration  
The genetic algorithm was coded in C++ programming language using simple array data structure. In order to test 

effectiveness of the present algorithm, some small data sets were selected. The results are compared with literature. 

 

Parts and their Process Plan-----→ 

 

M 1 1 1 2 2 3 3 4 4 5 5 

 1 2 3 1 2 1 2 1 2 1 2 

1   1  1 1  1 1  1 

2  1 1 1   1     

3 1   1 1    1 1  

4 1 1    1 1 1  1  

 

Table 1. Kusiak’s original incidence matrix [1] 

 

Parts and their Process Plan-----→ 

 

M 1 3 2 4 5 

 2 2 2 2 2 

2 1 1    

4 1 1    

1   1 1 1 

3   1 1  

 

Table 2. Result by present model. 

 

Parts and their Process Plan-----→ 

 

M 1 1 2 2 3 4 4 5 5 5 5 6 6 7 8 8 9 9 10 10 

 1 2 1 2 1 1 2 1 2 3 4 1 2 1 1 2 1 2 1 2 

1     1   1 1     1  1     

2 1 1 1 1  1 1     1   1 1 1 1   

3  1      1 1 1 1   1     1  

4   1 1 1 1 1 1  1 1 1 1  1 1 1  1 1 
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5 1  1   1   1  1    1   1  1 

6 1 1 1 1   1      1  1 1 1 1   

Table 3.Sankaran and Kasilingam’s incidence matrix [15] 

Table 1 contains data sets which shows processing times of five parts and four machines. Table 2 shows two cells 

without any exceptional elements. Table 3 contains data sets which shows processing times of ten parts and six 

machines. Table 4 shows cells with two exceptional elements.  

Parts and their Process Plan-----→ 

 

M 3 5 7 1 

0 

1 2 4 6 8 9 

 1 1 1 2 1 1 1 1 2 2 

1 1 1 1        

3  1 1        

2     1 1 1 1 1 1 

4 1 1  1  1 1 1 1  

5    1 1 1 1  1 1 

6     1 1   1 1 

Table 4. Result by present model. 

VI. Comparative Study 

In order to test the effectiveness of the present algorithm, large size data sets were selected. A large size problem 

given by Nagi [16] was selected to solve. There are twenty machine types and twenty parts with total fifty one 

number of process routes.  Results reported in literature shown in Table 5 are compared with obtained in Table 6. 

Cell No. Part no. Route no. Machine no. 

1 18,19, 20 1,1,1 4,13,15 

2 11,12,13 1,1,1 3,8,11,18 

3 1,2,3,4,5 2,2,2,2,3 1,7,9,12 

4 14,15,16,17 2,2,2,1 10,14,17,19 

5 6,7,8,9,10 1,6,2,6,1 2,5,6,16,20 

Table 5. Result by Nagi [16]. 

 

Cell No. Part no. Route no. Machine no. 

1 18,19, 20 1,1,1 4,13,15 

2 11,12,13 3,3,3 3,8,11,20 
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3 1,2,3,4,5 2,2,2,2,1 1,7,9,12 

4 14,15,16,17 2,2,2,1 10,14,17,19 

5 6,7,8,9,10 1,5,2,4,1 2,5,6,16,18 

Table 6. Result by present model. 

 

VII. Conclusion  
In this paper, a model is presented to solve the generalized group technology cell formation problem. It has 

multiple process routes for each part. Capacity of the machines and demand of each part has been formulated. The 

method selects the process route for minimizing the intercellular movements. A procedure based on genetic 

algorithm to solve the problem has been demonstrated by three problems selected from literature. The algorithm is 

quite effective to find global optimal solution within a reasonable time. The proposed model gives a good separable 

cell formation for medium and large sized problem also.   
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