DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

A Pick-n-Carry Mobile Crane Boom Stress Analysis

K.SUGUN PAUL¹, P.RAVI KUMAR², LAM VENKATESH³, BOLLIPALLI PRADEEP⁴

Assistant Professor^{1,2,3,4} Department of MECHANICAL

NRI INSTITUTE OF TECHNOLOGY, Visadala X Road, Medikonduru(M), Guntur (Dist), Andhra Pradesh 522438.

ABSTRACT

Mobile crane telescopic booms that are light and sturdy are a rarity. Crane booms may be retracted and extended in a variety of ways. Although retraction of the crane's boom improves its performance, extending the boom reduces its operational capacity. Increasing the distance makes communication more difficult. The crane's lifting capacity decreases as it moves away from the load. It used to be that crane booms couldn't go to new heights, but that's no longer the case. When the crane's boom is fully extended and angled to the highest degree achievable This research relies on the utilisation of crane boom and component stress analysis. SAE J1078 [2] specifies that calculations must be done by hand. The crane boom may be more efficient if its weight and strength are maximised. The crane boom components are compared in this research.

Keywords: Boom, Strength

Introduction

Because of their mobility, these cranes are widely utilised in the building industry It is possible for mobile cranes to lift and transport vast amounts of weight and mass. These cranes may also be moved on public highways, which is an added convenience. Booms are an essential component of mobile cranes. Facts are facts, and there's no arguing with them. Expandable booms that include at least two components Going backwards so you may rise even higher in the sky Crane lifts make use of portable components. The most typical causes of capacity problems are excessive strength or weight. After a while, things start to shift. The following are the most common causes of crane accidents: As a result, the structural integrity of mobile cranes is at risk. [2] They have a variety of downsides, including the fact that they are heavy-duty. for the consumer, lengthy booms that may be employed in a variety of situations are necessary booms that are too little or light have too much weight on them. The outermost rim of Boom's first portion It becomes more difficult to find a solution to the problem. With four pates in the boom, doing anything becomes more difficult. sections. The boom portions of cranes were made of wood in the past, but now they are made of metal. In order for the meal to be complete, the most vital ingredient must be included in the next strongest and the largest. Extensions for the booster hose The product's layout is a significant problem. Strength and the capacity to alleviate fatigue symptoms The maximum load a mobile crane's boom can support. The collecting of data is required as a second phase.

Objectives and Purpose

Manual calculation's main objective is to determine a value. evaluation of a person's talents Cranes with extendable extensions, such as this one, Analytical Reasoning'Training One of the key characteristics of a boom is its ability to provide a solution to the immediate problem. It's possible that the answer of an interaction equation will be less than or equal to one in certain cases. Taken into account are the many facets of this topic Torsional tension and bending are causing the panels to buckle and twist in both directions. Compressive stresses must be calculated [2]. That's what this investigation has discovered. Manual calculations are performed using SAE. The most extensively used standards in the business are AISC and J1078.

Methods and approaches

A boom is a must for any lifting operation to be effective. An very unusual occurrence. The crane's boom must be inspected for safety. Versatile in its use. In this article, an example is provided. The crane boom is subjected to a stress test. Breaking breaking a section into smaller sections. Jib is used for Hydra crane's 44-foot boom, which is 44 feet long. You might also look at the boom's lifting capacity, which is 12 tonnes.capacity. As part of the boom's design, the weights, etc. The object's dimensions and cross-sectional shape are shown in 3D computer graphicselements like hydraulic cylinders and boom sections TheMathematical calculations are required in order to carry out a boom-stress study. The following are examples of crane boom operating conditions: The boom has a 0° curve when completely extended. This is the point at which the boom reaches its maximum length a 55-degree

Published by: Longman Publishers

DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

incline is feasible. At a zero-degree angle, the boom has been fully retracted. The boom extends to a length of four feet when completely retracted. A 55 percent angle of view is achievable.

There are more than four possible scenarios in which forces and moments may be measured. This study examines some of the effects of stress. That concludes our look at the aforementioned four scenarios. The crane's retractable boom designThe following images illustrate the user's current location and their stretched state.a minimum of two and a maximum of four distinct hypothesesThere is minimal wind pressure on the head. Because of the side load, a lot of torque is generated on the head itself. The winch rope requires a 3 degree fleet angle.

Negligible

The pressure of the wind is the same on each side. A reply is the focus of this section. Friction forces arise in axial strains in materials. Only a few reactivity points link the various components of the system. To other stressors and the weight it imposes. The axial loads are carried by the cylinders. How stress analysis calculations operate is explained here:

Gather data as a starting point.

Included in this paper are details on boom height, operating distance, boom tilt, and rated load capacity. The first step is to figure out how the Boom is set up.b) The algorithm yields a shear diagram and a moment diagram. Secondly, the equations for the forces and moments have been deduced and studied. Build a crane boom and identify its components.

Analysis

The material's characteristics are well understood.Secondly, we have established the section's attributes.Consider the song's compressive and sectional characteristics in this period.Real and permissible quantities of stress may be calculated. Interaction equations and solutions. Stresses caused by compression.Web shear stress is determined in this step.In step 5, use tensile forces.

Information Gathering

The Solidworks boom design is used to gather the data. Section characteristics and boom distances areinferred from the layout itself. each and every one of the characteristics necessary forbased on current data, stress analysis calculations may be made. The boom's construction design.

- W1 = Weight of Fly Jib =80.198112kg = 196.7154 lb
- $W2 = Weight of 2^{nd} Extension = 264.7109 kg = 583.7872 lb$
- $W3 = Weight of 1^{st} Extension = 401.292 kg = 884.9999 lb$
- W4 = Weight of Mother Boom = 711.29kg = 1568.662 lb
- W5 = Weight of Extension Cylinder = 147 kg = 324.1903 lb
- W6 = Weight of Lug 1 = 43 kg = 94.83118 lb
- W7 = Weight of Lug 2 = 30.5 kg = 67.26398 lb
- W8 = Weight of Lug 3 = 25.6 kg = 56.45763 lb
- W9 = Weight of Hook Block = 149 kg = 328.6011 lb

www.jst.org.in

DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

Table 1: Boom distances					
Boom Distances	Boom (Fully Extended) Boom length=13093mm	Boom (Fully Retracted) Boom length = 7801mm			
Fly Jib					
Load pt. to 2nd ext. end pt. hor. (L1)	389.45mm(15.33268 in)	389.45 mm(15.33267in)			
Load pt. to boom center line, ver. (L2)	103.35mm(4.068898 in)	103.35 mm(4.068897in)			
Pulley center to 2nd ext. end pt., hor. (L3)	169.45mm (6.67126 in)	169.45 mm(6.671259 in)			
Pulley outer to 2nd ext. end pt. ver. (L4)	185.65mm(7.309055 in)	185.65 mm(7.309055 in)			
Pin point to flyjib head (L5)	191.38mm(7.534646 in)	191.38 mm(7.534645 in)			
C.G. to flyjib center line, hor. (L6)	1.12mm (0.044094 in)	1.12 mm (0.044094in)			
Pin point to flyjib center line, ver. (L7)	117.5mm (4.625984 in)	117.5 mm (4.625984 in)			
2nd Extension					
Bottom pad to end pt. (L8)	2803.6mm(110.378 in)	111.88 mm(4.404724in)			
Bottom pad to top pad, hor. (L9)	971.4mm(38.24409 in)	3663.12mm(144.2173in)			
Bottom pad to C.G. (L10)	854.43mm(33.63898 in)	3719.22mm(146.4259in)			
1st Extension	, , , , , , , , , , , , , , , , , , , ,				
Bottom pad on 2nd ext. to bottom pad on 1st ext.	2925mm (115.1575 in)	3719.22mm(146.4259in)			
Bottom pad to top pad, hor. (L12)	1953.6mm(76.91339 in)	4392 mm(172.913386in)			
Bottom pad to C.G. (L13)	520.73mm(20.50118 in)	3394.22mm(133.6307in)			
Bottom pad on 2nd ext. to top pad on 1st ext. (L14)	1792mm (70.55118 in)	4717 mm(185.708661in)			
Bottom pad to ext. cyl. Point on 1st extension (L15)	985.05mm(38.7815 in)	3585.05mm(141.1437in)			
Mother Boom	······	i i i i i i i i i i i i i i i i i i i			
Top pad to lift cyl. (L16)	3377mm(132.9528 in)	777 mm(30.5905512 in)			
Bottom pad to lift cyl. (L17)	5169mm (203.5039 in)	5169 mm(203.50397 in)			
Lift cyl. to boom pivot pt. (L18)	1806mm (71.10236 in)	1806.00mm(71.10236in)			
Boom pivot pt. to C.G. (L19)	3167.72mm(124.713in)	3167.72mm(124.7133in)			
Boom pivot pt. to boom center line (L20)	457.65mm(18.01772 in)	457.65mm(18.017716in)			
Boom pivot pt. to extension cyl. pt. (L21)	389.9mm(15.35039in)	389.9 mm(15.350393in)			
Boom pivot pt. to lift cyl. Pt. on chassis, hor. (L22)	3019.98mm (118.8969)	3019.98mm(118.8969in)			
Boom pivot pt. to lift cyl. Pt. on boom, ver. (L23)	386.65mm(15.22244 in)	386.65mm(15.22244in)			
Boom pivot pt. to lift cyl. Pt. on chassis, ver. (L24)	1572.5mm(61.90945in)	1572.5mm(61.90945in)			
Boom pivot pt. to lug1, hor. (L25)	4505mm (177.3622 in)	4505 mm(177.3622in)			
Boom pivot pt. to lug2, hor. (L26)	4805mm (189.1732 in)	4805.00mm(189.1733in)			
Boom pivot pt. to lug3, hor. (L27)	5205mm(204.9213 in)	5205.00mm(204.9212in)			
Boom pivot pt. to lug1, ver. (L28)	156.65mm(6.167323 in)	156.65 mm(6.167322in)			
Boom pivot pt. to lug2, ver. (L29)	156.65mm(6.167323 in)	156.65 mm(6.16732in)			
Boom pivot pt. to lug3, ver. (L30)	156.65mm(6.167323 in)	156.65mm(6.167322in)			
Breadth of Mother Boom (L31)	325mm(12.79528)	325mm (12.79528in)			

Table 2: Cylinder data

Extension Cylinder Data	Lift Cylinder Data
Bore = 100mm	Bore = 125mm
Stroke = 2100mm	Stroke = 1600mm
Closed Center Length =	Closed Center Length =
2500mm	1980mm
Width = 147 Kg	Number of Cylinders = 2

2.5.2 Material properties of crane boom

The material of boom of mobile crane is Mild steel having IS: 2062 grade having Ultimate tensile strength = 410Mpa, Yield strength = 250N/mm² = 36.2594344325 ksi, Poisson's ratio = 0.29, Mass density = 7.85kg/m²

www.jst.org.in

DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

Table 3:	Table 3: Section Properties of 44' Crane Boom						
Boom Sections	Mother Boom	l st Extension	2 nd Extension	Fly Jib			
B(mm)	325	275	185	90			
H(mm)	450	380	298	231			
TTop(Tt)	8	8	8	4			
TBottom(Tb)	10	8	8	4			
TSide(Ts)	8	8	8	4			
Length (Ls)	7100	5000	3900	4080			
Ix(mm ⁴)	39196.337	21655.059	9215.0811	1666.9225			
Zx(mm ³)	1742.06	1139.74	618.462	144.322			
Iy(mm ⁴)	22517.404	13155.701	4380.5343	378.69947			
Zy(mm ³)	1385.7	956.78	473.57	84.155			
Area(mm ²)	127.62	102.24	74.72	25.04			
Volume(mm ³)	90610.2	51120	29140.8	10216.32			

In four circumstances, an external load is imposed. With rubber tyre mounted cranes, rated loads cannot exceed 85 percent of tipping load at the given radius. All external loads are taken into account. According to the load chart of a mobile crane (Figure 2).

Table 4: Load lifted in four working conditions of crane

		boom		
External	Case-1	Case-2	Case-3	Case-4
load	Boom	Boom	Boom	Boom
P (Kg)	3420	7623	2100	4230

2.5.4 Forces and moments in Boom sections [3]

a) Maximum load calculation

Where $Pz = P1 \times SA$ $Px = Fll \times P1$ $M1 = (Py \times Li1) + (Pz \times Li2) - P \times Li4 \div N$ $M2 = Px \times Li1$ $T = Px \times Li2$

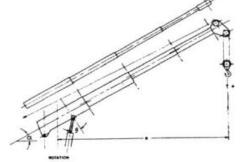


Figure 1: Loading diagram - Boom Assembly [3]

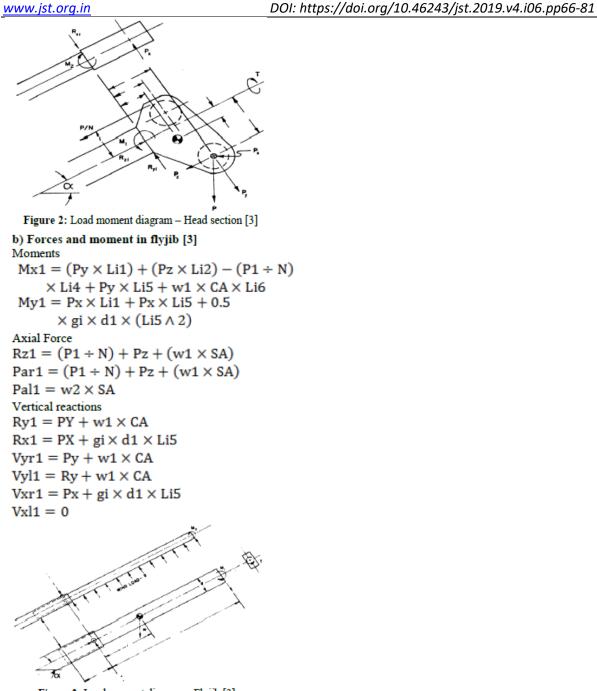


Figure 3: Load moment diagram - Flyjib [3]

c) Forces and moments in 2nd Extension [3] Moments

$$Mx2 = Mx1 + Ry1 \times Li8 + (0.5 \times w2 \times CA \times ((Li8 \wedge 2) \div (Li8 + Li9)))My2 = My1 + Rx1 \times Li8 + (0.5 \times gi \times d2 \times (Li8 \wedge 2))Axial ForceRz2 = Rz1 + w2 \times SAPar2 = Rz1 + ((w2 \times SA \times Li8) \div (Li8 + Li9))Vertical ReactionsRy3 = (Mx2 ÷ Li9) - ((0.5 × w2 × CA × Li9))÷ (Li9 + Li8))Ry2 = Ry1 + Ry3 + w2 × CARx3 = My2 ÷ Li9Rx2 = Rx1 + Rx3 + gi × d2 × Li8Vyr2 = Ry1 + ((w2 × CA × Li8) ÷ (Li8 + Li9)))Vyl2 = Ry3 + ((w2 × CA × Li8) ÷ (Li8 + Li9))Vyl2 = Ry3 + ((w2 × CA × Li8) ÷ (Li9 + Li8))Vxr2 = Rx1 + gi × d2 × Li8Vxr2 = Rx1 + gi × d2 × Li8$$

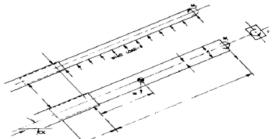


Figure 4: Load moment diagram 2nd Extension [3]

d) Forces and moments in 1st extension [3]

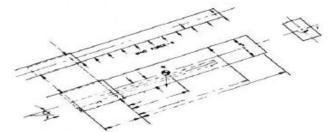


Figure 5: Load moment diagram 1st Extension [3]

```
DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81
www.jst.org.in
Moments
Mx3 = Ry2 \times Li11 - Ry3 \times Li14 - w3 \times CA \times Li12 - w6 \times CA \times Li15
 My3 = Rx2 \times Li11 - Rx3 \times Li14 + (0.5 \times gi \times d3 \times (Li11 \wedge 2))
 Rz3 = Rz2 + w3 \times SA
 Par3 = Rz2 + ((w3 \times SA \times Li11) \div (Li11 + Li12))
 Pal3 = ((w3 \times SA \times Li12) \div (Li11 + Li12))
 Vertical reactions
 Ry5 = (Mx3 \div Li12) - ((0.5 \times w3 \times CA \times Li12) \div (Li11 + Li12))
 Ry4 = Ry2 - Ry3 + Ry5 + w3 \times CA + w6 \times CA
 Rx5 = (My3 \div Li12)
 Rx4 = Rx2 - Rx3 + Rx5 + gi \times d3 \times Li11
Vyr3 = Ry2 - Ry3 + ((w3 \times CA \times Li11) \div (Li11 + Li12)) + w6 \times CA
Vyl3 = Ry5 + ((w3 \times CA \times Li12) \div (Li11 + Li12))
Vxr3 = Rx2 - Rx3 + gi \times d3 \times Li11
Vxl3 = Rx5
  e) Forces and moments in mother boom [3]
 Moments
      Mx4 = (Ry4 \times Li16) - (Ry5 \times Li17) + ((0.5 \times w4 \times CA \times (Li16 \land 2)) + (Li16 + 
          Li17) + w7 × Li25 + w8 × Li26 + w9 × Li27 + w5 × Li27 + w5 × Li21
  My4 = (Rx4 \times Li16) - (Rx5 \times Li17) + (0.5 \times gi \times d4 \times (Li16 \wedge 2))
  Axial load on cylinder
  Rz4 = Rz3 + (w4 + w5 + w7 + w8 + w9) \times SA
  Axial load on section
  Par4 = (w4 \times Li16) \div (Li16 + Li18)
  Pal4 = Par3
 Derrick cylinder reaction
  Rd = (Ry4 \times (Li16 + Li18) - Ry5 \times (Li17 + Li18) + w4 \times (Li19 \times CA - Li20 \times SA) +
       (w5 \times Li21 \times CA - Rz4 \times Li20) \div ((Li18 - ((Li20 - (d4 \div 2)) \div OT)) \times CT)
 Pivot Pin loading
 Rx6 = Rx4 - Rx5 + gi \times d4 \times (Li16 + Li18)
     Rzr6 = (Rd \times ST \div 2) + (Rx4 \times (Li16 + Li18) \div Li31) - (Rx5 \times (Li17 + Li18) \div
  Li31) - (Rz4 ÷ 2) + (w4 × SA ÷ 2) + ((0.5 × gi × d4 × ((Li16 + Li18) ∧ 2) ÷ li31) +
                                   ((w7 + w8 + w9) \times SA \div 2)
     RZL6 = (Rd \times ST + 2) - (Rx4 \times (Li16 + Li18) + Li31) + (Rx5 \times (Li17 + Li18) +
   Li31) - (Rz4 ÷ 2) + (w4 × SA ÷ 2) - ((0.5 × gi × d4 × ((Li16 + Li18) ∧ 2) ÷ Li31) +
                               ((w7 + w8 + w9) \times SA \div 2)
        Ryr6 = 0.5 \times (Rd \times CT + Ry5 - Ry4 - (w4 + w5 + w7 + w8 + w9) \times CA) -
           (Px \times (Li2 - Li20) \div Li31) + (gi \times d4 \times (Li16 + Li18) \times Li20 \div Li31)
        Ryl6 = 0.5 \times (Rd \times CT + Ry5 - Ry4 - (w4 + w5 + w7 + w8 + w9) \times CA) +
          (Px \times (Li2 - Li20) \div Li31) - ((gi \times d4 \times (Li16 + Li18) \times Li20) \div Li31)
  Vertical shear force
  Vyr4 = Rv4 - Rv5 + ((w4 \times CA \times Li16) + (Li16 + Li18))
  Vyl4 = Ry4 - Ry5 + ((w4 \times CA \times Li16) \div (Li16 + Li18))
  Vyl4 = Ryr6 + Ryl6 + ((w4 \times CA \times Li16) \div (Li16 + Li18)) + (w5 + w7 + w8 + w9) \times
                                           CA
```

www.jst.org.in

Lateral shear force $Vxr4 = Rx4 - Rx5 + gi \times d4 \times Li16$ $Vxl4 = Rx4 - gi \times d4 \times XLi18$ Extension cylinder reaction $Recy = (w1 + w2 + w3 + w6 + P) \times SA$

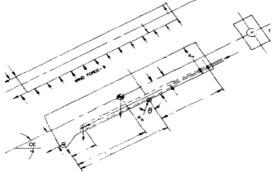


Figure 6: Mother Boom [3]

f) Calculations for forces and moments

Table 5: Maximum load calculation in four working conditions of boom

Max. load	Case-1	Case-2	Case-3	Case-4
calculation	Boom retracted at a=0	Boom retracted at a=55	Boom extended at a=0	Boom extended at a=55
P1	7542.386912	16811.58346	4631.290209	9328.741707
Ру	7542.386912	371.9858096	4631.290209	206.414794
Pz	0	-16807.46754	0	-9326.457782
Px	452.5432147	1008.695008	277.8774125	559.7245024
M1	107312.6607	-81256.63568	65893.73905	-45089.27836
M2	6938.699014	15465.99491	4260.604658	8582.075097
Т	1841.352017	4104.276733	1130.654747	2277.461706

	Table 6: Forces and Moments on Flyjib in four working conditions of boom					
Forces & Moments	Case-1	Case-2	Case-3	Case-4		
in Fly Jib	Boom retracted at $\alpha=0$	Boom retracted at a=55	Boom extended at $\alpha=0$	Boom extended at a=55		
Mx1	154106.0881	-100840.3028	94630.43061	-55956.17152		
My1	10348.45181	23066.1544	6354.312523	12799.40092		
Rz1	2514.128971	-11380.4301	1543.763403	-6393.700926		
Par1	2514.128971	-11380.4301	1543.763403	-6393.700926		
Pal1	0	-583.64426	0	-583.64426		
Ry1	7719.253927	375.8993029	4828.00561	210.3282873		
Rx1	452.5432206	1008.695013	277.8774184	559.7245083		
Vyr1	7719.253927	375.8993029	4828.00561	210.3282873		
Vy11	7896.120941	379.8127962	5024.721012	214.2417806		
Vxr1	452.5432206	1008.695013	277.8774184	559.7245083		
Vx11	0	0	0	0		

<u>www.jst.org.in</u>

DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

Table	Table 7: Forces and Moments on 2 nd extension in four working conditions of boom						
Forces & Moments	Case-1	Case-2	Case-3	Case-4			
in 2 nd Extension	Boom retracted at	Boom retracted at	Boom extended at	Boom extended at			
	α=0°	a=55°	a=0°	a=55°			
Mx2	188145.379	-99183.72686	651463.7831	-46729.45479			
My2	12341.77999	27509.17796	37025.85919	36960.10858			
Rz2	2514.128971	-11964.07436	1543.763403	-6977.345186			
Par2	2514.128971	-11397.72761	1543.763403	-6703.163914			
Pal2	0	-566.3467448	0	-274.181272			
Ry3	1021.353535	-694.0051988	16959.2515	-1224.907855			
Ry2	9324.394649	-305.1885791	22371.04429	-1001.662251			
Rx3	85.57765285	190.7480836	968.1457931	966.4265574			
Rx2	538.1208778	1199.443101	1246.023322	1526.151109			
Vyr2	7736.555678	376.2821345	5261.570045	217.1773762			
Vyl2	1587.838971	-681.4707137	17109.47424	-1218.839627			
Vxr2	452.543225	1008.695018	277.877529	559.7245515			
Vx12	85.57765285	190.7480836	968.1457931	966.4265574			
		at a second					

Table 8: Forces and Moments on 1st extension in four working conditions of boom

Forces & Moments in 1 st Extension	Case-1 Boom retracted at a=0°	Case-2 Boom retracted at a=55°	Case-3 Boom extended at a=0°	Case-4 Boom extended at a=55°
Mx3	-236779.145	-17316.44824	1307951.838	28784.93906
My3	-9007.106321	152948.0703	75185.08548	86526.85779
Rz3	2514.128971	-12848.85755	1543.763403	-7862.128377
Par3	2514.128971	-12349.96065	1543.763403	-7841.970732
Pal2	0	-566.3467448	0	-274.181272
Ry5	-1781.362965	-105.6660519	16828.32043	8308.15707
Ry4	7501.509191	304.8310505	23219.94426	8553.083157
Rx5	-52.09027791	884.5357435	977.5292646	24974.79759
Rx4	-61.51303245	1044.541862	2235.05866	1166.037355
Vyr3	8458.84854	399.4554291	6037.232056	244.4799542
Vy13	-957.3393497	-94.62437859	17182.71221	8308.603203
Vxr3	452.5432413	1008.695189	277.8776762	559.7247415
Vx13	-52.09027791	884.5357435	977.5292646	24974.79759

Table 9: Forces and Moments on Mother boom in four positions of boom

	Table 9: Forces and	Moments on Momer o	oom in four positions o	1 00011
Forces &	Case-1 Boom	Case-2 Boom	Case-3 Boom	Case-4 Boom
Moments in	retracted at a=0°	retracted at a=55°	extended at $\alpha=0^{\circ}$	extended_at a=55°
Mother Boom				
MX4	622711.8133	58484.59092	-201343.3013	-524573.7277
MY4	8718.859774	-148053.3942	98226.16802	-4927441.742
RZ4	2514.128971	-14864.93786	1543.763403	-10762.9921
PAR4	471.8739654	471.8739654	1022.066741	1598.691336
PAL4	2514.128971	-12349.96065	1543.763403	-7841.970732
Rđ	-20926.87593	7006.081268	-4308.992559	-5657.970635
Rx6	-9.422600613	160.0062728	1257.529705	-23808.75992
Rzró	-628.0130257	-4095.315699	13892.86666	-489031.9266
Rz16	-1886.115945	17268.28419	-15436.63006	497218.1659
Ryr6	5041.759233	3054.470077	-1965.600278	-1335.467486
Ryl6	4055.075347	855.2041597	-2571.459408	-2498.579113
Vyr4	9754.746121	420.9381426	7413.690575	280.2999403
Vyl4	10016.62047	3930.026115	-2738.479954	-3788.761907
Vxr4	147.090947	-853.7935171	-1266.912751	-199.6107923
Vx14	-61.51314008	1044.541755	2235.058553	1166.037247
Recy	0	-9361.192813	0	-5969.02351

2.6 Equations used for stress analysis:

```
2.6.1 Calculation of section properties based on
 compressive stresses
 Btf = B \div Tt
 Btw = H \div Ts
 Bta = 184 \div Sqrt(Fost \times Fyi)
Fa = Par \div (As \times 1000)
Fbx = Mx \div (Zx \times 1000)
Fby = My \div (Zy \times 1000)
Ff = Fa + Fbx
Fw = Fa + Fby
If (Btf \leq Bta) and (Btw \leq Bta) Then the plates in
compression are fully effective at yield [10].
Btxr = 184 \div Sqrt(Abs(Ff))
Btyr = 184 \div Sqrt(Abs(Fw))
If (BTF \leq BTXR) and (BTW \leq BTYR) Then the plates in
compression are fully effective at actual stress [10].
Btq = Ts \div Tb
If Btq \leq 95 ÷ Sqr (FYi) Then Qs = 1
Sigr = 0.5 \times Fyi
Rx = Sqrt(Ix \div As)
Ry = Sqrt(Iy \div As)
Cc = Sqrt(((Pi) \land 2) \times E \div (Qs \times Qa \times (Fyi - Sigr)))
Klx = k \times Ls \div Rx
Kly = k \times Ls \div Ry
If Klx < Kly then Kl = Kly
If Kl > Cc then, Elastic range
Faa = 12 \times (Pi \wedge 2) \times E \div (23 \times (Kl \wedge 2))
If Kl < Cc
  Faa = Qs × Qa × (1 - \text{Sigr} \times ((\text{Kl}) \land 2) \div
 (Fyi \times (Cc \land 2)) \times Fyi \div (5 \div 3) + (3 \div 8)
 \times (Kl ÷ Cc) - (1 ÷ 8) \times ((Kl ÷ Cc) \wedge 3))
```

2.6.2 Inelastic lateral Buckling If M1 > M2 then Mxmin = M1 And Mxmax = Mx

Bm = B - Ts $Hm = H - ((Tt + Tb) \div 2)$

$$J = 4 \times (Bm \land 2) \times (Hm \land 2) \div ((2 \times Hm \div Ts) + (B \div Tb) + (B \div Tt))$$

2.6.3 Inelastic Lateral buckling check

 $\begin{array}{l} Cb = 1.75 + 1.05 \times (Mxmin \div Mxmax) \\ +0.3 \times ((Mxmin \div Mxmax) \land 2) \\ Where 1 \leq Cb \leq 1.3 \\ Kle = Sqrt(5.1 \times Kt \times Ls \times Zx \div Sqrt(J \times Iy)) \\ If Kle < (102000 \div FYi) than \\ Fbxa = Fost \times Fyi \\ Fbya = Fost \times Fyi \end{array}$

2.6.4 Solution to interaction equations for compressive stresses

 $\begin{array}{l} Xa = Abs(Fa \div Faa), Xb = Abs(Fbx \div Fbxa), \\ Xc = Abx(Fby \div Fbya) \\ Fex = 12 \times (Pi \wedge 2) \times E \div (23 \times (Klx \wedge 2)) \\ Fey = 12 \times (Pi \wedge 2) \times E \div (23 \times (Kly \wedge 2)) \\ If Xa \leq 0.15 \ than \ Xd = Xa + Xb + Xc \\ If Xd \leq 1 \ than \ the \ design \ will \ be \ safe \ against \ buckling \\ And \ if \ Xd > 1, \ Than \ Xd = (Fa \div (FOST \ x \ Fyi)) + Xb + Xc \\ And \\ Xd1 = Xa + Cmx \times Fbx \div ((1 - (Fa \div Fex))) \end{array}$

 \times (Fbxa) + Cmy \times Fby \div ((1 - (Fa \div Fey)) \times Fbya)

If Xd and Xd1 equal to or less than one than the design will be safe

2.6.5 Actual and allowable shear stresses in webs

 $\begin{array}{l} Fs = (Vyr \div (2 \times B \times Ts) + T \div \\ (2 \times As \times Ts)) \div 1000 \\ If H \div T \leq 380 \div Sqrt (Fyi) \ than \ Fsa = 0.4 \ X \ Fyi \\ And \ if \ Fsa = 0.4 \leq Fyi \ than \ stiffeners \ are \ not \ required \\ If \ Abs \ (Fs) \leq Abs \ (Fsa) \ than \ the \ design \ will \ be \ safe \ against \\ shear \end{array}$

2.6.6 Tensile stresses Ft = (-Fa + Fbx + Fby) $Fta = (Fost \times Fyi)$ If $Ft \le Fta$, than the design will be safe against tensile failure

2.7 Calculations for stress analysis

2.7.1 Case – 1 When the boom is fully retracted and at an angle = 0°

www.jst.org.in

DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

Table 10: Calculation of section properties based on Compressive stresses

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Btf	22.5	23.125	34.375	40.625
Btw	57.75	37.25	47.5	56.25
Bta	37.52760125	37.52760125	37.52760125	37.52760125
Fa	0.647769747	0.217079155	0.158647833	0.023854741
Fbx	17.49799981	4.985189659	-3.404386091	5.857673294
Fby	2.015089483	0.427064602	-0.154267742	0.261896522
Ff	18.14576956	5.202268814	-3.245738257	5.881528035
Fw	2.662859231	0.644143757	0.004380091	0.285751263
Btxr	43.19466672	80.67174073	102.1318211	75.87046351
Btyr	112.7570535	229.259015	278.201253	344.2102065

Table 11: Calculation for determination of allowable stresses

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Btq	1	1	1	0.8
Qs	1	1	1	1
Qa	1	1	1	1
Sigr	18.21210326	18.21210326	18.21210326	18.21210326
Rx	3.212231386	4.372173945	5.729818869	6.899691211
Ry	1.531074066	3.014471493	4.465939585	5.22957065
Cc	126.4389349	126.4389349	126.4389349	126.4389349
Klx	100.0114263	81.27634792	68.71086092	81.02610697
K1y	209.8264543	117.8827969	88.15631737	106.9026801
K1	209.8264543	117.8827969	88.15631737	106.9026801
Faa	3.450282756	10.75387107	14.62058838	12.26578541

Table 12: Inelastic lateral buckling check

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Mxmax	107312.6607	107312.6607	-236779.145	622711.8133
Mxmin	154106.0881	188145.379	107312.6607	107312.6607
Bm	3.385826772	6.968503937	10.51181102	12.48031496
Hm	8.937007874	11.41732283	14.64566929	17.36220472
J	23.10704846	213.2229929	586.1236399	14.4505726
Cb	1.3	1.3	1.3	1.939857148
Kle	22.59101563	15.3019954	12.89915202	1024.190401
Fbxa	24.0399763	24.0399763	24.0399763	24.0399763
Fbya	24.0399763	24.0399763	24.0399763	24.0399763

Table 13: Solution to interaction equations for the Compressive Stresses

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Xa	0.18774396	0.020186141	0.010850988	0.00194482
Xb	0.727870926	0.207370823	0.141613538	0.243663855
Xc	0.08382244	0.017764768	0.006417134	0.010894209
Fex	15.18713766	22.9957093	32.17543233	23.13796849
Fey	3.450282756	10.93136281	19.54646796	1.358038263
Xd	0.999437326	0.245321731	0.15888166	0.256502883

www.jst.org.in

DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

Table 14: Calculation of Actual and Allowable shear stress in the webs

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Fs	8.423187941	1.938650714	1.424902372	13.29223421
H/Ts	57.75	37.25	47.5	56.25
Fsa	14.56968261	14.56968261	14.56968261	14.56968261

Table 15: Calculation of tensile stresses

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Ft	18.86531955	5.195175106	-3.717301666	6.095715074
Fta	24.0399763	24.0399763	24.0399763	24.0399763

2.7.2 Case – 2 When the boom is fully retracted and at an angle = 55°

1	Fable 16: Ca	lculation of s	ection pro	perties based	l on Comp	pressive stresse	s
	Parameters	Flviib	2 nd ext	ension 1 st e	extension	Mother boom	1

Parameters	Flyjid	2 ^{rm} extension	1 ^{er} extension	Mother boom
Btf	22.5	23.125	34.375	40.625
Btw	57.75	37.25	47.5	56.25
Bta	37.52760125	37.52760125	37.52760125	37.52760125
Fa	-2.93218781	-0.984121781	-0.77931344	0.023854741
Fbx	-11.4499279	-2.628019312	-0.248974104	0.550147948
Fby	4.491528395	0.951904517	2.619593083	-4.447217864
Ff	-14.3821157	-3.612141093	-1.028287544	0.574002689
Fw	1.559340583	-0.032217263	1.840279643	-4.423363123
Btxr	48.51839586	96.81339948	181.4514886	242.8627227
Btyr	147.3490473	1025.117154	135.6362931	87.48659752

Table 17: Calculation for determination of allowable stresses

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom		
Btq	1	1	1	0.8		
Qs	1	1	1	1		
Qa	1	1	1	1		
Sigr	18.21210326	18.21210326	18.21210326	18.21210326		
Rx	3.212231386	4.372173945	5.729818869	6.899691211		
Ry	1.531074066	3.014471493	4.465939585	5.22957065		
Cc	126.4389349	126.4389349	126.4389349	126.4389349		
Klx	100.0114263	81.27634792	68.71086092	81.02610697		
Kly	209.8264543	117.8827969	88.15631737	106.9026801		
Kİ	209.8264543	117.8827969	88.15631737	106.9026801		
Faa	3.450282756	10.75387107	14.62058838	12.26578541		

Table 18: Inelastic lateral buckling check

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Mxmax	-100840.303	-99183.72686	-17316.44824	58484.59092
Mxmin	-81256.6357	-81256.63568	-81256.63568	-81256.63568
Bm	3.385826772	6.968503937	10.51181102	12.48031496
Hm	8.937007874	11.41732283	14.64566929	17.36220472
J	23.10704846	213.2229929	586.1236399	1024.190401
Cb	1.3	1.3	1.3	1
Kle	22.59101563	15.3019954	12.89915202	16.47618776
Fbxa	24.0399763	24.0399763	24.0399763	24.0399763
Fbya	24.0399763	24.0399763	24.0399763	24.0399763

www.jst.org.in

DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

Table 19: Solution to interaction equations for the Compressive Stresses.							
Parameters	Flyjib	2 nd extension	1 st extension	Mother boom			
Xa	0.84983986	0.091513258	0.039869783	0.00194482			
Xh	0 476286988	0 100318715	0.01035667	0.022884713			

Xb	0.476286988	0.109318715	0.01035667	0.022884713
Xc	0.186835808	0.039596733	0.108968206	0.184992606
Fex	15.18713766	22.9957093	32.17543233	23.13796849
Fey	3.450282756	10.93136281	19.54646796	13.29223421
Xd	Xd = 0.663123	0.240428706	0.159194659	0.209822138
	Xd1 =0.669321			

Table 20: Calculation of Actual and Allowable shear stress in the webs

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Fs	3.694306965	0.644589912	0.469717905	0.381606865
H/Ts	57.75	37.25	47.5	56.25
Fsa	14.56968261	14.56968261	14.56968261	14.56968261

Table 21: Calculation of tensile stresses

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Ft	-4.0262117	-0.691993014	3.149932419	-3.920924657
Fta	24.0399763	24.0399763	24.0399763	24.0399763

2.7.3 Case – 3 When the boom is fully extended and at an angle = 0°

Table 22: Calculation of section properties based on Compressive stresses

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Btf	22.5	23.125	34.375	40.625
Btw	57.75	37.25	47.5	56.25
Bta	37.52760125	37.52760125	37.52760125	37.61277208
Fa	0.397753353	0.133294218	0.097415336	0.051668749
Fbx	10.744827	17.26149498	18.80559643	-1.86861933
Fby	1.237335649	1.281211771	1.287720267	2.950511007
Ff	11.14258036	17.3947892	18.90301177	-1.816950581
Fw	1.635089003	1.41450599	1.385135603	3.002179756
Btxr	55.12199605	44.11723016	42.32064915	136.504279
Btyr	143.8954707	154.7089461	156.3405649	106.1938771

Table 23: Calculation for determination of allowable stre

Flyjib	2 nd extension	1 st extension	Mother boom
1	1	1	0.8
1	1	1	1
1	1	1	1
18.21210326	18.21210326	18.21210326	18.12971722
3.212231386	4.372173945	5.729818869	6.899691211
1.531074066	3.014471493	4.465939585	5.22957065
126.4389349	126.4389349	126.4389349	126.4389349
100.0114263	81.27634792	68.71086092	81.02610697
209.8264543	117.8827969	88.15631737	106.9026801
209.8264543	117.8827969	88.15631737	106.9026801
3.450282756	12.92512958	14.62058838	12.2423439
	1 1 18.21210326 3.212231386 1.531074066 126.4389349 100.0114263 209.8264543 209.8264543	1 1 1 1 1 1 1 1 18.21210326 18.21210326 3.212231386 4.372173945 1.531074066 3.014471493 126.4389349 126.4389349 100.0114263 81.27634792 209.8264543 117.8827969 209.8264543 117.8827969	1 1 1 1 1 1

www.jst.org.in

DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

Table 24: Inelastic lateral buckling check					
Parameters	Flyjib	2 nd extension	1 st extension	Mother boom	
Mxmax	94630.43061	651463.7831	1307951.838	-198647.3593	
Mxmin	65893.73905	65893.73905	65893.73905	65893.73905	
Bm	3.385826772	6.968503937	10.51181102	12.48031496	
Hm	8.937007874	11.41732283	14.64566929	17.36220472	
J	23.10704846	213.2229929	586.1236399	1024.190401	
Съ	1.3	1.3	1.3	1.3	
Kle	22.59101563	15.3019954	12.89915202	14.4505726	
Fbxa	24.0399763	24.0399763	24.0399763	24.0399763	
Fbya	24.0399763	24.0399763	24.0399763	24.0399763	

Table 25: Solution to interaction equations for the Compressive Stresses

		-		
Parameters	Flyjib	2 nd extension	3 rd extension	Mother boom
Xa	0.049756429	0.010312795	0.006662888	0.004220495
Xb	0.446956639	0.718032945	0.782263518	0.073594439
Xc	0.05146992	0.053295051	0.053565788	0.123291256
Fex	15.18713766	30.79273489	32.17543233	23.13796849
Fey	3.450282756	14.63779841	19.54646796	13.29223421
Xd	0.548182987	0.781640792	0.842492193	0.20110619

Table 26: Calculation of Actual and Allowable shear stress in the webs

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Fs	5.251086953	1.301788484	0.998486465	0.998248754
H/Ts	57.75	37.25	47.5	56.25
Fsa	14.56968261	14.56968261	14.56968261	14.56968261

Table 27: Calculation of tensile stresses

Parameters	Flviib	2 nd extension	1 st extension	Mother boom
Ft	11.5844093	18.40941253	19.99590136	1.030222927
Fta	24.0399763	24.0399763	24.0399763	24.0399763

2.7.4 Case – 4 When the boom is fully extended and at an angle = 55°

In this case the side thickness is taken as 16mm and total breadth of mother boom is taken 341mm. Because the strength required for mother boom is high when the boom has to work at 55 degree angle and boom is in extended position.

Table 28: Calculation of section properties based on

Compressive stresses					
Parameters	Flyjib	2 nd extension	1 st extension	Mother boom	
Btf	22.5	23.125	34.375	42.625	
Btw	57.75	37.25	47.5	28.125	
Bta	37.52760125	37.52760125	37.52760125	37.52760125	
Fa	-1.64734828	-	-	0.051668756	
Fbx	-6 .35355222	-	0.410112361	-3.76680393	
Fby	2.492347518	1.278936593	1.481974619	-	
Ff	-8.0009005	-	-	-	
Fw	0.84499924	0.703790157	0.992129202	-	
Btxr	65.05016286	136.6211111	651.6263213	95.4619965	
Btyr	200.1657019	219.329086	184.7284162	32.34760603	

www.jst.org.in

DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

Table 29: Calculation for determination of allowable

stresses					
Parameters	Flyjib	2 nd extension	1 st extension	Mother boom	
Btq	1	1	1	1.6	
Qs	1	1	1	1	
Qa	1	1	1	1	
Sigr	18.21210326	18.21210326	18.21210326	18.21210326	
Rx	3.212231386	4.372173945	5.729818869	6.314209581	
Ry	1.531074066	3.014471493	4.465939585	5.743301605	
Cc	126.4389349	126.4389349	126.4389349	126.4389349	
Klx	100.0114263	70.23659581	68.71086092	88.53920842	
Kly	209.8264543	101.8707972	88.15631737	97.34037259	
K1	209.8264543	101.8707972	88.15631737	97.34037259	
Faa	3.450282756	12.92512958	14.62058838	13.50143141	

Table 30: Inelastic lateral buckling check

			<u> </u>	
Parameter				Mother boom
Mxmax				-524573.7277
Mxmin				-45089.27836
Bm	-55956.1715	6.968503937	10.51181102	12.79527559
		11.41732283		
J	23.10704846	213.2229929	586.1236399	1497.231279
Съ	1.3	1.3	1	1.3
Kle	22.59101563	14.22485027	14.70729614	12.83437332
Fbxa	24.0399763	24.0399763	24.0399763	24.0399763
Fbya	24.0399763	24.0399763	24.0399763	24.0399763

Table 31: Solution to interaction equations for the

~		~
Com	nreceive	Stresses
Com	pressive	Ducasca

Parameters				Mother boom	
				0.003826909	
			0.017059599		
				-1.348063316	
				19.37777468	
				16.03205385	
Xd	0.817886545	0.149225308	0.112209669	-1.500925576	

Table 32: Calculation of Actual and Allowable shear stress in the webs

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
Fs	2.051452949	0.359306127	0.2637354	0.074997356
H/Ts	57.75	37.25	47.5	28.125
Fsa	14.56968261	14.56968261	14.56968261	14.56968261

Table 33: Calculation of tensile stresses

Parameters	Flyjib	2 nd extension	1 st extension	Mother boom
				-36.22588286
Fta	24.0399763	24.0399763	24.0399763	24.0399763

CONCLUSION

www.jst.org.in

DOI: https://doi.org/10.46243/jst.2019.v4.i06.pp66-81

Four separate human calculations are carried out in order to assure the safety of the boom design under high loading conditions. Workplace conditions The boom sinks to its lowest position as it retracts. The strain on the system is reduced when the boom angle is zero degrees. At a 55-degree angle, the horn was sounded for maximum impact. The boom, on the other hand, is sometimes widened and put to use. The automated technique reveals more information than the human method does. The boom, according to the calculations, will not break under any kind of strain. If the boom angle exceeds 30 degrees, zero-degree boom operation is not safe. 55°. Compression is where you'll find plates that are either under or overstressed. Reactive, yet unable to provide outcomes in the actual world. The stiffeners engage when the boom is angled at a 55-degree angle. The mother's nurturing of a child's stamina is essential. The boom may be set to a 55-degree angle using the manual control. Stiffeners in the computations improve the accuracy of the results.

References

[1] Lawrence K. Shapiro and Jay P. Shapiro, "Cranes and Derricks" Fourth edition McGraw Hill. 1980

[2] SAE J1078 Reaffirmed APR94, "A Recommended method of analytically determining the competence of hydraulic telescopic cantilevered crane booms."

[3] Navneet Kumar and Mohd. Parvez, "Force distribution on telescopic boom of crane." Int. J. Mech. Eng. & Rob. Res.2012 Vol.1, No.2, ISSN 2278-0149

[4] Marquez, P. Venturino and J. L. Otegui, "Common root causes in recent failures of cranes." Engineering Failure Analysis 2014; 39: 55-64

[5] Guangfu Sun and MichealKleeberger, "Complete dynamic calculation of lattice mobile crane during hoisting motion." Mechanism and Machine theory 2005;40: 447-466

[6] IS: 4573 1982, Edition 2.1 (1989-09) Specification for Power Driven Mobile Cranes

[7] IS:2062(2011) Hot rolled medium and high tensile structural steel.

[8] ISO 4309 Cranes – Wire ropes Code of practice for examination and discard

[9] ISO 4310 Cranes- Test code and procedures

[10] AISC "Specification for structural steel buildings – Allowable stress design and Plastic design." June 1, 1989 with commentary

[11] Richard L. Neitzel, Noah S. Seixas and Kyle K. Ren, "A review of crane safety in the construction industry" 2001;16(12):1106-1117