IMPLEMENTING AI APPLICATIONS IN RADIOLOGY: HINDERING AND FACILITATING FACTORS OF CONVOLUTIONAL NEURAL NETWORKS (CNNS) AND VARIATIONAL AUTOENCODERS (VAES)

Authors

  • Surendar Rama Sitaraman

Keywords:

Artificial Intelligence,, Convolutional Neural Networks,, Diagnostic Imaging,, Medical Image Analysis, Healthcare Technology.

Abstract

Radiology is changing as a result of artificial intelligence (AI), which improves diagnostic accuracy and efficiency. In particular, CNNs and VAEs (variational autoencoders) are making a significant impact. In addition to helping radiologists by managing the increasing complexity and volume of imaging data, CNNs are excellent at automating image processing and recognizing abnormal states like tumors. VAEs are less prevalent, but they have a special benefit: they may create artificial medical images for data augmentation and privacy protection, which is important when there is a lack of data. The requirement for sizable annotated datasets, model interpretability, and ethical issues including data privacy and bias in AI-driven diagnoses all pose obstacles to the mainstream implementation of AI in radiology, despite its potential. In order to overcome these obstacles, AI must be integrated into the current healthcare systems while taking ethical and technical concerns into consideration. With ongoing developments anticipated to improve its applicability in clinical operations and eventually improve patient outcomes, artificial intelligence in radiology has a bright future.

Downloads

Published

2022-10-25

How to Cite

Surendar Rama Sitaraman. (2022). IMPLEMENTING AI APPLICATIONS IN RADIOLOGY: HINDERING AND FACILITATING FACTORS OF CONVOLUTIONAL NEURAL NETWORKS (CNNS) AND VARIATIONAL AUTOENCODERS (VAES). Journal of Science & Technology (JST), 7(10), 175–190. Retrieved from https://jst.org.in/index.php/pub/article/view/1024